
USB-MIDI
v0.08

2023/03/18

USB MIDI for RISC OS 5

by

Rick Murray
&

Dave Higton

rick -at- heyrick -dot- eu

Introduction

This document describes the USB-MIDI module, version 0.08. The module itself is called “MIDI” and offers
the same SWIs as the old Acorn MIDI module; it is intended to be a (mostly) drop-in replacement. The
difference, however, is that this module works with MIDI devices attached via USB; plus it is intended to
work on the newer range of RISC OS machines such as the Beagle, RaspberryPi, ARMX6, Titanium...

Differences

If you are used to the Acorn MIDI module (from 1989), then please note the following differences between
that module and this implementation:

• There is no MIDI interpreter/player, nor is one planned. As a consequence of this:
• The SWIs and commands related to the interpreter are dummies and do nothing.
• The MIDI module does not support timing in the same way as the original module,

specifically timing using BARS and BEATS.

• USB-MIDI data is sent as distinct packets. Therefore it is not possible to transmit data with a
running status. For instance, on original MIDI you could do the following:

<note on><note><velocity><note><velocity><note><velocity>

(note there is only one “note on”; the rest are assumed)
When sending this sort of sequence via the MIDI module, the first note will be sent and all of the
subsequent notes will be discarded as invalid data.
Additionally, data may not be transmitted immediately if using TxByte. It will be buffered until a
complete MIDI command is available, and then it will be sent.

• USB devices are hot-pluggable. This means they may be arbitrarily connected and disconnected.
For this reason, please note:
• The presence of the MIDI module does not imply MIDI hardware. You must explicitly ask

how many MIDI interfaces are present.
• It is valid for there to be zero interfaces, and for this value to change at any time.
• Likewise, a MIDI interface in use may disappear at any time. In this situation, look at the

error byte (SWI MIDI_InqError), it will be ‘X’ if the interface has vanished.

• The receive buffer is 2048 bytes, the transmit buffer is 3 bytes (yes, three ... when a valid packet
has been formed, it will be output immediately). The schedule buffer is 8192 bytes, but note that in
addition to MIDI data, time values are also stored.
These buffers are per-port, and the values are fixed and cannot be changed.

• MIDI data is timestamped. If a high resolution timer is available, then it can be stamped with
millisecond accuracy in FastClock mode. If the timer is not available, then this behaviour will be
faked by multiplying the system 100Hz ticker by ten.

• The use of the schedular requires both a high resolution timer and the module to be running in
Fast Clock mode. Refer to MIDI_FastClock on page 19.

Limitations

There are some limitations in this version of the MIDI module. Please read this carefully!

• There is no built-in MIDI interpreter.
Resolution:

None. There are no plans to implement a MIDI interpreter.

• The SWI to provide direct access to the module’s innards does not work, it returns an error!
Resolution:

None. This module is completely different to the Acorn module (it is written in C for a start!) and as such

there is no mechanism to jump into the innards of the module, nor will there ever be such a thing.

• Commands that are not part of the MIDI 1.0 standard cannot be handled.
Resolution:

None. Please get in touch if you’d like to discuss ideas.

• The module receives, but does not transmit, Active Sensing messages.
Resolution:

None. Please get in touch if you’d like to discuss ideas.

• Using TxByte to send notes with running status (in other words, one note on command followed
by multiple notes) is not supported.
Resolution:

Use TxCommand to send notes individually. Please get in touch if you’d like to discuss ideas.

• SysEx commands are unlikely to be correctly supported (it’s untested).
Resolution:

None. Please get in touch if you’d like to discuss ideas.

• The module does not immediately transmit bytes that have been sent to it.
Resolution:

None. MIDI over USB sends commands as a frame of up to four bytes, so the module will buffer data (if sent

byte by byte) until a valid command has been received, and that will then be sent.

General compatibility

My aim is, as much as possible, to provide a module that is a drop-in replacement for the original Acorn MIDI
module that grants access to modern USB-based MIDI devices; with a simple and clear API that is
sufficiently documented that you do not have to spend an eternity trying to work out what is supposed to
happen and when.

In terms of hardware, this module has been developed on a RaspberryPi (256MiB Model B rev. 2 type 1233)

with a Yamaha PSR e-333 keyboard and a generic USB to MIDI interface connected to a Roland E-16.

In terms of software, this module has been tested with my own programs (mostly written in BASIC, some are
supplied with the module) and the off-the-shelf version of !Maestro that comes with RISC OS 5, as well as the
recommended software Rhapsody4 that you can download from:

https://jeanmichelb.riscos.fr/Rhapsody4.html

Introducing MIDI

MIDI means Musical Instrument Digital Interface. Originally specified as a serial protocol (akin to
connecting a modem), MIDI is a means of connecting electronic instruments (synthesisers and keyboards, etc)
not only to each other, but also to computers and sequencers so music can be “programmed” and played at
will. In the reverse sense, it is also possible for a keyboard to be used for music input, and there are programs
that are able to convert music played on a keyboard into notation.

While serial MIDI devices exist, they are increasingly rare as USB has become a ubiquitous protocol. Many
modern keyboards offer USB connectivity. For older keyboards, it may be necessary to purchase a USB to
serial MIDI convertor. Note, however, that the ones you can purchase for a tenner on eBay, Amazon, etc tend
to be terrible, more details below.

Internally, each MIDI instrument has a transmitter ad a receiver (this is true for serial and USB alike). These
communicate with other MIDI devices using a standardised code (known as “General MIDI”) which sends
informations such as which notes to play, how hard the keys are being pressed, whether or not the sustain
pedal is in use, and all sorts of other messages, such as which “program” (voice) to select – should it sound
like a grand piano or a tubular bell?

With a MIDI interface connected to your RISC OS computer, you can use the computer to control your
musical instruments, either with software you write yoursnelf or third-party software. The RISC OS music
scene is not particularly active these days, however Rhapsody4 is available for free and it is really rather good.

A note of warning regarding cheap USB MIDI interfaces

You can purchase inexpensive USB to MIDI interfaces on eBay, Amazon, etc. While these work, it should be
pointed out that they work to a degree. The one that is typically available is only able to cope with five notes
being received at the same time. I do not know if there is a quirk in RISC OS’s handling of USB data or if the
device doesn’t bother to report back “hang on, buffer full”, but what I do know is that too much data at once
will cause data to be lost.

This issue is discussed in more detail at:
http://www.heyrick.co.uk/blog/index.php?diary=20141122

By default, no delay is used, however you can specifically enable a delay on a per-port basis using the
MIDI_Options SWI described on page 22.

However, if you are serious about music, you’ll simply want to avoid cheap interfaces. By handling only
around five notes at a time, that’s a chord and two notes of melody on one instrument. They’re cheap for a
reason...

Connecting it up

In the old days, there were three MIDI ports (IN, THRU, OUT) which had specific purposes. Now it’s just a
standard USB cable.

If you have a serial keyboard with an adaptor, push the round plug marked IN into the keyboard’s IN socket,
ditto for the OUT plug and socket, and then insert the USB plug into your computer.

If you have a USB keyboard, then just hook the cable up as appropriate. The computer uses the usual flat type
A, the keyboard will probably use the chunky square type B.

That’s all.

To test your hardware, with the keyboard/instrument connected to your computer and the MIDI module
loaded, go to the command line (press F12) and type:

*MIDIUSBSend 144 60 80

You should hear a Middle C being played. If your instrument does not stop playing the note, type:
*MIDIUSBSend 144 60 0

If you don’t hear anything, enter:
*USBDevices

and verify that the device is present and is being recognised. For my cheap interface, it appears like this:
15 1 7 0/ 0 QinHeng Electronics USB2.0-MIDI

Then enter:
*MidiUSBInfo

and the last few lines of the output should say something like:
 Information for port 0:

 Current MIDI device is USB15, VID 1A86, PID 752D,

 using IN file handle 254,

 and OUT file handle 244.

This will tell you if and what is recognising the device.

MIDI timestamp

The default MIDI timestamp is the MIDI beat counter, which increments around 20 times per second (for
~98BPM).
Using the MIDI_FastClock SWI, the module will switch to a millisecond timestamp if your machine has
an available high resolution counter. If not, it will use a fake millisecond timestamp by using the current
system ticker (the 100Hz tick).

Setting bit 0 of R0 to MIDI_Options, you can choose to use the faked timestamps if you wish.

Programming MIDI

The MIDI module provides a number of SWI calls intended to make programming MIDI as flexible as
possible.

You may know that SWI calls correspond to the BASIC command SYS. So let’s quickly recap what SYS
looks like:

SYS "<swi name>", r0%, r1%, r2%, r3%, r4% TO r0%, r1%, r2%, r3%, r4% ; flags%

command to call registers values to send register values to receive CPU flags

Pretty much all of this, except the SWI to call, is optional. Assume you have a SWI to add two numbers,
passed in R0 and R1 and the result is returned in R2. You would call this as follows:

SYS “AddStuff”, firstnum%, secondnum% TO ,,result%

(made up name!) note the two commas here

To put this into more useful practice, the SWI “MIDI_TxCommand” takes the following parameters:
R0, byte 0, is the MIDI command
R0, byte 1, is the first data byte (if required)
R0, byte 2, is the second data byte (if required)
R0, bits 24-25, are optional (and not currently supported)
R0, bits 28-31, are the port (MIDI device) number
R1 is the time in which to send the note, or zero to send it immediately.

So if you recall from the previous page, the MIDI command to broadcast a middle C is 144,60,80. Therefore
we would construct our data word, for port 0, as follows:

data% = (80 << 16) OR (60 << 8) OR 144

Then we will pass this as a SWI call:
SYS "MIDI_TxCommand", data%, 0

You should have heard a middle C sound on your instrument.

There’s another way to do this. The “MIDI_TxNoteOn” SWI sends the command to play a note. It takes
the following parameters:

R0 is the note to play (60 is middle C; each number up/down is one semitone)
R1 is the velocity of the key (0 is silent (this usually stops a note playing), 127 is extremely hard)

Which means that:

SYS "MIDI_TxNoteOn", 60, 80

would have also played a middle C.

To read data, we will look at the “MIDI_Init” SWI. This scans for MIDI devices, registers them, and then
returns the number of devices found in R0, like this:

SYS "MIDI_Init", 0, 0 TO devices%

PRINT "You have "+STR$(devices%)+" MIDI devices connected."

Please refer to the BBC BASIC Manual, or Google, for further details on the SYS command, if necessary.

SWI commands

SWI commands are listed numerically. There are many. Don’t panic!
(well, maybe panic a little, but do it quietly or you’ll scare the sheep)

MIDI_SoundEnable

(&404C0)

This SWI is recognised, but it has no effect (no MIDI interpreter).

On entry –

On entry – (preserved)

MIDI_SetMode

(&404C1)

This SWI is recognised, but it has no effect. Replies with dummy data.

On entry –

On exit R0 = 1
R1 = byte 0 is 1, byte 1 is 1.

MIDI_SetTxChannel

(&404C2)

Specifies the port (device) and MIDI channel for all subsequent MIDI_Tx..... commands.
This is all of the transmission commands except for MIDI_TxByte and MIDI_TxCommand.

On entry R0 = Channel number (1-64) or 0 to read.
1-16 means channels 1-16 of device 0
17-32 means channels -16 of device 1
33-48 means channels 1-16 of device 2
49-64 means channels 1-16 of device 3

On exit R0 = New (or current, if reading) channel number

If the chosen channel points to a device that is not present, then no change will be made.

MIDI_SetTxActiveSensing

(&404C3)

Transmission of Active Sensing is not currently supported, however you can use this
SWI in order to determine if Active Sensing messages are being received on a given port.

On entry R0 = Bit 0 = Disable sending Active Sensing messages
Bit 1 = Enable sending Active Sensing messages (not currently implemented)

On exit R0 = Bits 0-3 correspond to MIDI ports 0-3 if Active Sensing is being sent.
Bits 4-7 correspond to MIDI ports 0-3 if Active Sensing is being received.

MIDI_InqSongPositionPointer

(&404C4)

This command returns the current MIDI clock divided by six, along with information on the
MIDI timing.

On entry –

On exit R0 = 0 (position)
R1 = Bit 0 = Set if Internal Timing is in use (Fast Clock mode)

Bit 1 = Set if External Timing is in use (not Fast Clock, and after MIDI_Start)
Bit 2 = Set if in Fast Clock mode
Bit 3 = Also set if in Fast Clock mode (originally “Version 3 facilities”)
Bit 4 = Set if System Real Time Messages are put in the receive buffer
Bit 5 = Set if System Real Time Messages are not acted upon.

If Fast Clock is not in use and no MIDI_Start has happened, it is possible for bits
0 and 1 (timing source) to both be zero.

MIDI_InqBufferSize

(&404C5)

Despite what the name may imply, this call returns the number of unused bytes in the
receive or transmit buffer.

The complete buffer sizes are:
Receive buffer – 1024 bytes
Transmit buffer – 3 bytes

On entry R0 = 0 to read the receive buffer size
1 to read the transmit buffer size
and bits 1-2 specify the MIDI device (0-3)

On exit R0 = Number of bytes free in the selected buffer.

MIDI_InqError

(&404C6)

Returns the value of the MIDI error flag, byte 0 for device 0, byte 1 for device 1, etc. Only
the most recent error state is given, previous errors will have been overwritten.
Reading the error byte clears the error condition.

On entry –

On exit R0 = Four bytes, one per device, giving the current error code for each device.

Possible values of the error byte are:
 0 (0) There is no current error to report.

“A” (65) Active Sensing is no longer being received.
“B” (66) Receive buffer is full, and data has been lost.

“D” (68) Transmit data has been discarded due to unrecognised command/data.
“X” (88) USB device has been disconnected.
“/” (???) USB device not present.

The errors “F”, “L”, “O”, “T”, and “V”, are not supported (UART/interpreter errors that are not
applicable in this implementation), while “D”, “X” and “/” are our own (new) error codes.

MIDI_RxByte

(&404C7)

Returns the next received MIDI byte. It is recommended that MIDI_RxCommand be used in
preference to byte reads.
Normally Real Time messages are handled by the module and are not present in the receive
buffer, however this can be changed by flags given to MIDI_Init.

On entry R0 = Port number, or -1 to look at all ports and return whichever has data.

On exit R0 = Received byte, or 0 if there is no data to return.

If a byte was received, then:
Bit 24 = 1
Bits 28-31 = Port number where this byte was received

R1 = Received time, or 0 if no byte or clock disabled.

Does not return an error if the buffer has overflowed. The background error event will
be raised, and the error byte (check with MIDI_InqError) will be ‘B’, if overflow occurred.

MIDI_RxCommand

(&404C8)

Returns the next complete MIDI command as a set of bytes (normally excluding Real Time
messages).

On entry R0 = Port number, or -1 to look at all ports and return whichever has data.

On exit R0 = byte 0 is command
byte 1 is data byte 1 (or 0)
byte 2 is data byte 2 (or 0)
bits 24-25 are the number of bytes (0-3) in this command
bits 28-31 are the MIDI device that this message was received by

Will be 0 if the receive buffer is empty.

R1 = Time when last byte was received, or 0 if buffer empty or clock disabled.

Note that System Exclusive messages will be received as the command &F0 and a sequence
of data bytes (across however many calls to MIDI_RxCommand are necessary) until done.

Does not return an error if the buffer has overflowed. The background error event will
be raised, and the error byte (check with MIDI_InqError) will be ‘B’, if overflow occurred.

MIDI_TxByte

(&404C9)

Inserts a byte into the transmit buffer to assemble a MIDI command for transmission.
Note that unlike the original MIDI module that would send the byte immediately, USB MIDI

works with a series of command packets, so a packet is assembled and transmitted in its

entirety.

Note that sending Running Status is not supported.

On entry R0 = byte 0 is the byte to transmit
bits 28-31 specify the MIDI port (0-3) to transmit from

On exit –

Does not return an error if the byte is discarded due to incorrect type (the commands are
vetted). Use MIDI_InqError to check the status is not “D”.

MIDI_TxCommand

(&404CA)

Transmit or schedule a complete MIDI command on the channel defined by
MIDI_SetTxChannel.

On entry R0 = byte 0 is command
byte 1 is data byte 1 (or 0)
byte 2 is data byte 2 (or 0)
bits 24-25 optional number of bytes in this command if not a known command

bits 28-31 are the MIDI port to transmit from

R1 = 0 to send immediately, or clock value upon when to send (in Fast Clock mode)

On exit R0 = Number of scheduler slots free in queue, or -1 if failed because the queue is full.

Running status is not supported, only complete commands will be sent.

Any partial data in the transmit buffer (via Midi_TxByte) will be overwritten by the data
provided in this command.

Commands are sanitised, and will be discarded (without error) if the command byte does
not have bit 7 set, or any of the data bytes do have bit 7 set.
The exception to this rule is when sending a System Exclusive message because SysEx

messages cannot currently be sent.

Notes that are earlier than the current schedule time are sent immediately, they don’t error.

The size of the scheduler queue is 1024 commands.

MIDI_TxNoteOff

(&404CB)

Transmits a MIDI “Note Off” command on the currently selected channel.

On entry R0 = Note (0-127, middle C is 60 and each digit represents one semitone)

R1 = Key off velocity (0-127)

On exit –

MIDI_TxNoteOn

(&404CC)

Transmits a MIDI “Note On” command on the currently selected channel.

On entry R0 = Note (0-127, middle C is 60 and each digit represents one semitone)

R1 = Velocity (0-127; using velocity 0 is an alternative to Note Off; 64 is “average”)

On exit R1 = -1 if some sort of error ocurred.

Does not return an error if the MIDI device is not present. It sets R0 to -1 instead. This
is so older programs unaware of USB disconnection don’t crash when the device is removed.

MIDI_TxPolyKeyPressure

(&404CD)

Transmits a MIDI “Poly Key Pressure” command for after-touch effects. The exact effect
of this command varies depending on the receiving device and the selected voice.

On entry R0 = Note (0-127, middle C is 60 and each digit represents one semitone)

R1 = Pressure value (0-127)

On exit –

MIDI_TxControlChange

(&404CE)

Transmit a MIDI “Control Change” command.

On entry R0 = Control number (0-127)

R1 = Control value (0-127)

On exit –

Control numbers 122-127 are reserved for Channel Mode Messages, which may be either
transmitted using this SWI or by the following 6 SWIs (MIDI_TxLocalControl to
MIDI_TxPolyModeOn).

MIDI_TxLocalControl

(&404CF)

Transmits a MIDI “Local Control” command (control number 122).

On entry R0 = 0 for Local Control Off, or

127 for Local Control On

On exit –

MIDI_TxAllNotesOff

(&404D0)

Transmits a MIDI “All Notes Off” command (control number 123).

On entry/exit –

MIDI_TxOmniModeOff

(&404D1)

Transmits a MIDI “Omni Mode Off” command (control number 124).

On entry/exit –

MIDI_TxOmniModeOn

(&404D2)

Transmits a MIDI “Omni Mode On” command (control number 125).

On entry/exit –

MIDI_TxMonoModeOn

(&404D3)

Transmits a MIDI “Mono Mode On” command (control number 126).

On entry R0 = The number of channels to respond to (1-16), or 0 to respond on all supported
channels.

On exit –

Refer to your MIDI device handbook, as multi-timbral devices frequently have interesting

interpretations of what this means.

MIDI_TxPolyModeOn

(&404D4)

Transmits a MIDI “Poly Mode On” command (control number 127), and thus ends Mono
Mode.

MIDI_TxProgramChange

(&404D5)

Transmits a MIDI “Program Change” command, that is to say to instruct the instrument to
change its program/voice/tone/patch/instrument and start sounding like something different.

On entry R0 = Program (voice) number (0-127)

On exit –

The General MIDI specification defines 128 voices, which are arranged as 16 “families”
(piano, reed, brass, etc) each containing 8 instruments.

PIANO CHROMATIC PERCUSSION

1 Acoustic Grand 9 Celesta
2 Bright Acoustic 10 Glockenspiel
3 Electric Grand 11 Music Box
4 Honky-Tonk 12 Vibraphone
5 Electric Piano 1 13 Marimba
6 Electric Piano 2 14 Xylophone
7 Harpsichord 15 Tubular Bells
8 Clavinet (not Clarinet) 16 Dulcimer

ORGAN GUITAR

17 Drawbar Organ 25 Nylon String Guitar (acoustic)
18 Percussive Organ 26 Steel String Guitar (acoustic)
19 Rock Organ 27 Electric Jazz Guitar (electric)
20 Church Organ 28 Electric Clean Guitar (electric)
21 Reed Organ 29 Electric Muted Guitar (electric)
22 Accoridan 30 Overdriven Guitar
23 Harmonica 31 Distortion Guitar
24 Tango Accordian 32 Guitar Harmonics

BASS SOLO STRINGS

33 Acoustic Bass 41 Violin
34 Electric Bass (finger) 42 Viola
35 Electric Bass (pick) 43 Cello
36 Fretless Bass 44 Contrabass (double bass)
37 Slap Bass 1 45 Tremolo Strings
38 Slap Bass 2 46 Pizzicato Strings
39 Synth Bass 1 47 Orchestral Strings
40 Synth Bass 2 48 Timpani (a drum?)

ENSEMBLE BRASS

49 String Ensemble 1 57 Trumpet
50 String Ensemble 2 58 Trombone
51 SynthStrings 1 59 Tuba
52 SynthStrings 2 60 Muted Trumpet
53 Choir Aahs 61 French Horn
54 Voice Oohs 62 Brass Section
55 Synth Voice 63 SynthBrass 1
56 Orchestra Hit 64 SynthBrass 2

REED PIPE

65 Soprano Sax 73 Piccolo
66 Alto Sax 74 Flute
67 Tenor Sax 75 Recorder
68 Baritone Sax 76 Pan Flute
69 Oboe 77 Blown Bottle
70 English Horn 78 Skakuhachi (a bamboo flute)
71 Bassoon 79 Whistle
72 Clarinet 80 Ocarina (like a ceramic seashell with holes in it)

SYNTH LEAD (synth lead melody) SYNTH PAD (continual tone)
81 Lead 1 (square) 89 Pad 1 (new age)
82 Lead 2 (sawtooth) 90 Pad 2 (warm)
83 Lead 3 (calliope (steam organ)) 91 Pad 3 (polysynth)
84 Lead 4 (chiff) 92 Pad 4 (choir)
85 Lead 5 (charang (like a lute)) 93 Pad 5 (bowed)
86 Lead 6 (voice) 94 Pad 6 (metallic)
87 Lead 7 (fifths) 95 Pad 7 (halo)
88 Lead 8 (bass + lead) 96 Pad 8 (sweep)

SYNTH EFFECTS ETHNIC

97 FX 1 (rain) 105 Sitar (Indian/Pakistani guitar)
98 FX 2 (soundtrack) 106 Banjo (you watched Deliverance, right?)
99 FX 3 (crystal) 107 Shamisen (Japanese 3-string guitar-like)
100 FX 4 (atmosphere) 108 Koto (Japanese 13 strings-on-a-board)
101 FX 5 (brightness) 109 Kalimba (African plucked metal tines)
102 FX 6 (goblins) 110 Bagpipe
103 FX 7 (echoes) 111 Fiddle
104 FX 8 (sci-fi) 112 Shanai (Iran/India/Pakistan double-reed oboe)

PERCUSSIVE SOUND EFFECTS

113 Tinkle Bell 121 Guitar Fret Noise
114 Agogo 122 Breath Noise
115 Steel Drums 123 Seashore
116 Woodblock 124 Bird Tweet
117 Taiko Drum 125 Telephone Ring
118 Melodic Tom 126 Helicopter
119 Synth Drum 127 Applause
120 Reverse Cymbal 128 Gunshot

Note that the voices are numbered 1 to 128 while the MIDI commands count from zero, thus
you should subtract one from the above numbers when selecting which voice to play.

Modern synthesisers and keyboards offer a far greater variety of voices, such as the Erhu
(Chinese 2-string fiddle), Tamboura (Balkan lute), and Church Bells, among many others.
However the methods used to select these additional voices are more complicated.

Usually you would issue a “Bank Select” command (controller 0 (coarse) and 32 (fine)) to
switch the bank, then a Program Select to choose the specific voice.
Unfortunately, the allocation of voices and the methods of accessing them varies between
manufacturers and even devices; so you will need to consult your handbook for specifics.

MIDI_TxChannelPressure

(&404D6)

Transmits a MIDI “Channel Pressure” command. This is akin to modifying the velocity as
the note is playing and may change the modulation, pitch, or volume depending on the
voice and instrument capabilities.

On entry R0 = Pressure value (0-127)

On exit –

The difference between KeyPressure (aftertouch) and ChannelPressure is that KeyPressure is
applied to individual notes and would usually be expected to control the LFO (giving a
vibrato effect) while ChannelPressure is applied to all notes playing on the channel and is
usually expected to control the VCA (volume).

If you want to know more about LFO, VCA, and music synthesis in general, there is a good
introductory description at http://beausievers.com/synth/synthbasics/

MIDI_TxPitchWheel

(&404D7)

Transmits a MIDI “Pitch Wheel” command. This alters the pitch of the voice by a few cents
to transpose the instrument slightly. This permits you to perform effects such as a user
controlled vibrato or to ‘slide’ (portamento) into the next note to be played, and so on. How
this is implemented depends upon the instrument’s capabilities.

On entry R0 = Pitch change (0-16383 (0-&3FFF) with 8192 (&2000) being ‘centre’ position)

On exit –

The recommended range of the pitch wheel is +/- 2 semitones; however this is not
standardised. Some instruments permit the pitch wheel range to be configured (RPN #0).

Why may the pitch alteration be necessary? MIDI, and Western music in general, works on
a system of twelve tone equal temperament. As such, some forms of music (Arabic music
(which ostensibly uses a 24 tone system with quarter tones; though the exact iterpretation
of the tonal system differs by region), or music using exact frequencies (such as specifying
500Hz)) cannot easily be represented by MIDI note values alone. By using a combination of
a MIDI note and a pitch modification, any frequency is available for play.
The range is a 14 bit number with some eight thousand offsets from the centre point
permitting melismatic adjustment of the notes; though individual implementation
limitations may throw away a lot of the data (for instance, working only in +/- 127 steps).

MIDI_TxSongPositionPointer

(&404D8)

Transmits a MIDI “Song Position Pointer”. This does not automatically update the internal

copy as song positions are not supported by the MIDI module.

On entry R0 = Song Position Pointer (0-16383 (0-&3FFF))

On exit –

Songs are assumed to start at MIDI beat 0. The value specified is the MIDI beat upon which
to start the song. Each MIDI beat spans six MIDI clocks. There are 24 MIDI clocks in a
crotchet (quarter note), so each beat is the same duration as a semiquaver (16th note).

MIDI_TxSongSelect

(&404D9)

Transmits a MIDI “Song Select”. This is for choosing a specific song stored in the
instrument for playback.

On entry R0 = Song number (0-127)

On exit –

Song #0 should play the first song, even though most instruments that store songs will
display them to the user counting from 1.

MIDI_TxTuneRequest

(&404DA)

Transmits a MIDI “Tune Request” command. This is for older synthesisers with oscillator
circuits, and most likely doesn’t do anything on digital synthesisers.

On entry / exit –

MIDI_TxStart

(&404DB)

Transmits a MIDI “Start” command. This resets the beat counter and the Song Position to
zero and causes the instrument to begin playback of the selected song.
(there are no internal effects as beat timing is not implemented in the MIDI module)

On entry / exit –

MIDI_TxContinue

(&404DC)

Transmits a MIDI “Continue” command. This causes the instrument to continue playback of
the previously selected song. As for MIDI_TxStart, there are no internal effects.

On entry / exit –

The difference between this and MIDI_TxStart is that the beat counter is not reset.

What this means is – to play a song:
Select the song with MIDI_TxSongSelect

Start it playing with MIDI_TxStart

-

Or otherwise – to play a song from a specific position:
Select the song with MIDI_TxSongSelect

Set the playback start position with MIDI_TxSongPositionPointer

Start it playing from that position with MIDI_TxContinue

MIDI_TxStop

(&404DD)

Transmits a MIDI “Stop” command. The instrument will cease playing the song, though it
will remember the current playback position (so a call to MIDI_TxContinue can resume
playing from where it was stopped).

On entry / exit –

MIDI_TxSystemReset

(&404DE)

Transmits a MIDI “System Reset” command. This resets the instrument to a state that is
usually the same as its power-on state.

On entry / exit –

The effect of this command depends upon the instrument, however generally speaking:
• All playing notes will be silenced, any song playback will be stopped.
• The local keyboard will be enabled.
• Running status and timers will be reset.
• The device may reset to the default voice.
• The device may reset to Omni, Poly mode if there is no default saying otherwise.
• Anything else specific to the device.

This command should not be used as a matter of course; it should only be sent in response
to a specific request from the user.

MIDI_IgnoreTiming

(&404DF)

This operates as a switch and tells the system to either ignore any further timing Clock
messages as well as Start/Continue/Stop messages, or to revert to normal reception of them.

On entry R0 = 0 to receive messages (default)
= 1 to ignore timing messages

On exit -

Note that enabling this will cause these messages to be completely discarded, they won’t go
in the receive buffer.

MIDI_TxSynchSoundScheduler

(&404E0)

This SWI is recognised, but it has no effect. Replies with dummy data.

On entry –
On exit R0 = 0 (specifies sound scheduler is synchronised to the Sound Interrupt (default))

MIDI_FastClock

(&404E1)

This SWI controls the Fast Clock. It is strongly recommended that you use this timing mode.

On entry R0 = <0 read current value of Fast Clock

= 0 stop Fast Clock, revert to beat timing

= >0 start Fast Clock
The associated behaviour of sending Timing Clock messages every n
milliseconds is not currently supported.

R1 = If R0 > 0 then this is the value to reset the Fast Clock to.

On exit R0 = Preserved
R1 = Previous value of Fast Clock

The Fast Clock increments every millisecond.
This SWI must be called at least once to enable the Fast Clock in order to use the scheduling
facilities. The value in R1 initialises the clock, and schedule times are relative to this.

Fast Clock requires access to Timer 1. Obviously this cannot be used with other software
that uses Timer1 or hardware that lacks an available timer.

MIDI_Init

(&404E2)

Reset the internal MIDI system status, or perform certain partial resets.

On entry R0 = 0 to reset everything
bit 0 set ignored - module doesn’t support Running Status
bit 1 set to clear receive buffers
bit 2 set to clear transmit buffer (this is only useful if using TxByte)
bit 3 set to clear scheduler buffer
bit 4 set clear current error (if possible, some like “no USB device” cannot be

cleared!)
bit 30 set Place received Real Time messages are to go into the receive buffer
bit 31 set Do not perform special actions on Real Time messages (ignore them)

On exit R0 = Number of MIDI ports installed (subtract one from the maximum port number)

There is a slight difference between this MIDI module and the Acorn original in reporting
the number of MIDI ports. USB MIDI devices are allocated a port number in the order that
they are connected (or if already connected, in the order they are presented to the system).
The value returned in R0 is the number of MIDI devices currently available; which can be

zero. Additionally, there is no guarantee that they are sequential. Two devices might be 0
and 1, or 0 and 3...

Certain applications may require setting bits 30 and 31 in order that the module pass through
Real Time messages (without the module handling them) in order to fully capture the MIDI
data stream.

If only Clock messages are to be inhibited, it is recommended to use MIDI_IgnoreTiming as
setting bit 31 will cause all Real Time messages to be ignored.

MIDI_SetBufferSize

(&404E3)

This SWI is recognised, but it has no effect. Replies with dummy data.

On entry –

On exit R0 = 2048 (buffer size in bytes)
R1 = 2048 (just repeating the previous value)

The buffers are fixed and cannot be altered. Additionally, the buffer sizes (given in the
original user guide as “5 × size × MIDI ports” isn’t valid as this module works differently.

Setting a larger buffer size may have been useful on an 8MHz machine in order to receive
complex data without loss. This shouldn’t be an issue on modern machines.

MIDI_Interface

(&404E4)

Any attempts to call this SWI will result in an error being raised.

The original MIDI module ran on 8MHz hardware and message timing is in the order of
microseconds. Keep in mind that MIDI runs at 31250 bits per second and a lot of computer
systems of this age/clockspeed struggle with more than 19200bps. To put this into context,
MIDI can pass just over 3000 bytes per second, which on a system running flat out could

equate to 1000-2000+ commands every second. To further compound the issue, the Acorn
MIDI hardware did not offer much in the way of buffering, so a fast software response time
is important. The original MIDI module was written in pure assembler to go as quickly as
possible (this was in the late ’80s when using C was not very commonplace); and to further
provide speed improvements over something that needed a very fast response time, Acorn
provided a SWI that returns some pointers into the MIDI module, such that R0 is a pointer
to the MIDI module workspace, and R1 is the address of the SWI handler code. By
providing this, the user can place the computer into SVC mode, place the SWI offset
(counting from the first SWI, so it is basically the SWI number with &40400 subtracted)
into R11, place the workspace pointer into R12, and then jump directly into the module,
bypassing the entire operating system SWI decode and call mechanism.

In this day and age, we (should!) recoil in absolute horror at the idea of branching directly into
module space from a user mode application. I get it, speed was of critical importance, but I
figure people might say the same thing as they’re going 100kph down the wrong side of the
road because <insert lame excuse here>. Really, there are some things that are just plain
icky and this is one of them. This is like olive flavoured ice cream. Just... Don’t...

MIDI_USBInfo

(&404EA)

Returns information on the MIDI subsystem.

On entry R0 = 0 = General information
1-4 = Specific information on a USB MIDI device

If R0 = 0 then:
On exit R0 = Number of connected MIDI devices (0-4).

R1 = Bitmap of connected MIDI devices (bit 0 = port 0 ... bit 3 = port 3).
R2 = Undefined.
R3 = Undefined. These “undefined” values may carry information indended

R4 = Undefined. for debugging and development, which may change from one

R5 = Undefined. release to another. You should not use this data or make any

R6 = Undefined. assumptions about meaning or presence of said data.

R7 = Undefined.

If R0 = 1-4 then:
On exit R0 = Number of bytes used (remaining to be read) in the device’s receive buffer;

or -1 if the device is not valid (and if -1, no other data will have been set).
R1 = Pointer to USB device name string (like “USB8”)
R2 = Pointer to device’s product name string.
R3 = Pointer to device’s receive buffer.
R4 = Receive buffer head pointer (offset from buffer start where incoming data goes).
R5 = Receive buffer tail pointer (offset from buffer start where Rx SWIs read from).
R6 = Non-zero if this device is flagged as slow hardware that needs delays.
R7 = Pointer to internal device decriptor (this is for debugging, you should not use it).

Everywhere else, MIDI devices are numbered 0-3 however this SWI takes device numbers
1-4. This is so passing zero can provide a generic reply.

Some cheap hardware doesn’t set the USB Product data. If this is the case, the module will
instead provide the USB Manufacturer data, so you should get some sort of response.

For example, to obtain the USB device ID and the product name:

>SYS “MIDI_USBInfo”, 1 TO , id$, product$

>PRINT id$, product$

USB15 USB2.0-MIDI

>

MIDI_Options

(&404EB)

This SWI allows you to set various options.

On entry R0 = Options bitmap, or -1 to read

R1 = Bitmap of devices that need hardware delays, or -1 to read

On exit R0 = Value of options bitmap.

R1 = Value of delay bitmap.

R2 = Undefined.

R3 = Undefined.

The available option is:
bit 0 Fake Fast Clock timestamps using system ticker instead of high resolution

timer. This may have side effects.

The delay bitmap is bit 0 for device 0, bit 1 for device 1, etc.

If a device needs delay, the module will insert a pause after data has been handed over to the
USB system for transmission.
The delay is 320 microseconds × (number of bytes send + 1). It uses the HAL to perform the
delay at microsecond speeds, so the entire machine may be paused for up to 1,280µS.
To put this into context, each 320µS delay is about a third of a millisecond, so the higher
resolution timer used for timestamping data isn’t accurate enough.
It’s mostly, mind you, just a hack to get lame and cheap serial MIDI interfaces working
by artificially delaying for the duration it would take to actually send the data at 31250bps.

Commands

The following commands are provided only for compatibility, they have no effect.

*MidiSound in|out|off [<port>]
*MidiTouch on|off
*MidiChannel <channel (1-16)>
*MidiMode <mode (1-4)>
*MidiStart <time>
*MidiStop

*MidiContinue

The USB MIDI module also provides the following three commands:

*MidiUSBSend [P<port>] <command> [<parameter1> [<parameter2>]]
This command sends a MIDI command to MIDI device 0. The command is any valid General MIDI 1.0
command, so the following should cause a Middle C to be played:

*MidiUSBSend 144 60 64
If the optional port (prefixed with a P) is specified, then the command will be directed to the given port.

*MidiUSBInfo
This command reports information on the USB MIDI setup, looking something like this:

MIDI USB information:
 Timestamp type is Fast Clock
 MIDI Clock is 0 (Song Position = 0)
 Current TX channel is 0 (real channel 1 on real port 0).

Information for port 0:
 Current MIDI device is USB15, VID 1A86, PID 752D,
 using IN file handle 254 and OUT file handle 246.

The exact report depends upon what, if any, devices are connected.

*MidiUSBDebug
This command reports much more techical information on the USB MIDI setup, which may be useful if
things are not working as expected.

Service calls

The MIDI module makes four service calls.

Service_MIDI

(&58)

The Service_MIDI service call provides some information on the module status, as defined by the Acorn MIDI
module:

R0 = 0 = module has initialised
1 = module is dying

Additionally, the USB MIDI module provides these service calls:

R0 = 10 = a USB MIDI device has been connected
11 = a USB MIDI device has been disconnected

Events

The MIDI module provides several events.

Event_MIDI

(&11)

The original MIDI module provided the following events:

R0 = &11 (Event_MIDI)

R1 = 0 = MIDI_DataReceivedEvent
A receive buffer was empty and has now received data.

1 = MIDI_ErrorEvent
An error has occurred in the background (use the MIDI_EnqError SWI to
determine what the error was).

2 = Unimplemented (to do with scheduling)

The USB MIDI module adds the following events:

10 = MIDI_DeviceConnectedEvent
A USB MIDI device has been connected.

11 = MIDI_DeviceDisconnectedEvent
A USB MIDI device has been disconnected.

(this page has been left blank for your notes)

(this page has been left blank for your notes)

	Introduction, Differences
	Limitations, Compatibility
	Introducing MIDI
	Programming MIDI
	SWI commands
	MIDI_SoundEnable
	MIDI_SetMode
	MIDI_SetTxChannel
	MIDI_SetTxActiveSensing
	MIDI_InqSongPositionPointer
	MIDI_InqBufferSize
	MIDI_InqError
	MIDI_RxByte
	MIDI_RxCommand
	MIDI_TxByte
	MIDI_TxCommand
	MIDI_TxNoteOff
	MIDI_TxNoteOn
	MIDI_TxPolyKeyPressure
	MIDI_TxControlChange
	MIDI_TxLocalControl
	MIDI_TxAllNotesOff
	MIDI_TxOmniModeOff
	MIDI_TxOmniModeOn
	MIDI_TxMonoModeOn
	MIDI_TxPolyModeOn
	MIDI_TxProgramChange
	MIDI_TxChannelPressure
	MIDI_TxPitchWheel
	MIDI_TxSongPositionPointer
	MIDI_TxSongSelect
	MIDI_TxTuneRequest
	MIDI_TxStart
	MIDI_TxContinue
	MIDI_TxStop
	MIDI_TxSystemReset
	MIDI_IgnoreTiming
	MIDI_TxSynchSoundScheduler
	MIDI_FastClock
	MIDI_Init
	MIDI_SetBufferSize
	MIDI_Interface
	MIDI_USBInfo
	MIDI_Options

	Commands
	*MidiUSBSend
	*MidiUSBInfo
	*MidiUSBDebug

	Service calls
	Service_MIDI

	Events
	Event_MIDI

