
USB-MIDI
v0.01

2013/08/07

by

Rick Murray

heyrick1973 -at- yahoo -dot- co -dot- uk

Work in progress - stuff may change.

This is the “how it is supposed

to work” manual. Reality may differ.

Greatly.

(alpha 3)

Introduction

This document describes the USB-MIDI module, version 0.01. The module itself is called “MIDI” and offers
the same SWIs as the old Acorn MIDI module; it is intended to be a (mostly) drop-in replacement. The
difference, however, is that this module works with MIDI devices attached via USB; plus it is intended to
work on the newer range of RISC OS machines such as the Beagleboard and the RaspberryPi.

Differences

If you are used to the Acorn MIDI module (from 1989), then please note the following differences between
that module and this implementation:

• There is no MIDI interpreter/player, nor is one planned. As a consequence of this:
• The SWIs and commands related to the interpreter are dummy SWIs and do nothing.
• The MIDI module does not support timing.
• The MIDI module does not interpret and act upon system messages; everything is placed in

the receive buffer.

• USB-MIDI data is sent as distinct packets. Therefore it is not possible to transmit data with a
running status. For instance, on original MIDI you could do the following:

<note on><note><velocity><note><velocity><note><velocity>
(note there is only one “note on”; the rest are assumed)

When sending this sort of sequence via the MIDI module, the first note will be sent and all of the
subsequent notes will be discarded as invalid data.

• USB devices are hot-pluggable. This means they may be arbitrarily connected and disconnected.
For this reason, please note:
• The presence of the MIDI module does not imply MIDI hardware. You must explicitly ask

how many MIDI interfaces are present.
• It is valid for there to be zero interfaces, and for this value to change at any time.
• Likewise, a MIDI interface in use may disappear at any time. In this situation, look at the

error byte (SWI MIDI_InqError), it will be ‘X’ if the interface has vanished.

• The receive buffer is 1024 bytes, the transmit buffer is 3 bytes (yes, three ... when a valid packet
has been formed, it will be output immediately).
These values are fixed and cannot be changed.

• Scheduling/timing is not supported, neither are MIDI commands timestamped. MIDI data is
available when MIDI data arrives. MIDI data is sent as it is given to the module. No exceptions.
The scheduling command will return an error of no free schedule slots if you attempt to schedule
data. Either run your own timing/dispatch or use the Sound_QSheduler SWI (as !Maestro
does).

Limitations

There are some limitations in this version of the MIDI module. Please read this carefully!

• There is no built-in MIDI interpreter.
Resolution:

None. There are no plans to implement a MIDI interpreter.

• Only the first MIDI interface encountered is used, others are ignored.
Resolution:

None, yet. A future version of the MIDI module will support up to four USB devices.

• The SWI to provide direct access to the module’s innards does not work, it returns an error!
Resolution:

None. This module is completely different to the Acorn module (it is written in C for a start!) and as such
there is no mechanism to jump into the innards of the module, nor will there ever be such a thing.

• Commands that are not part of the MIDI 1.0 standard cannot be handled.
Resolution:

None. If this is a grave limitation to you, please get in touch.

• Only one program at a time can utilise the MIDI interface (as a program taking data out of the
buffer means it will not be there for other programs).
Resolution:

None as yet. Please get in touch if you’d like to discuss ideas.

• THIS IS ALPHA QUALITY SOFTWARE AND MAY CONTAIN BUGS.
Just thought I’d make that really clear..

General compatibility

My aim is, as much as possible, to provide a module that is a drop-in replacement for the original Acorn
MIDI module that grants access to modern USB-based MIDI devices; with a simple and clear API that is
sufficiently documented that you do not have to spend an eternity trying to work out what is supposed to
happen and when.

In terms of hardware, this module has been developed on a RaspberryPi (256MiB Model B rev. 2 type 1233)
with a Yamaha PSR e-333 keyboard and a generic USB to MIDI interface connected to a Roland E-16.

In terms of software, this module has been tested with my own programs (mostly written in BASIC, some are
supplied with the module) and the off-the-shelf version of !Maestro that comes with RISC OS 5.19.

If you are the creator of MIDI sequencing software and my MIDI module does not work with your software;
consider sending me a complete copy of your software product (registered, if commercial) and I will see what
I can do to support it (though, note the lack of timing support, if you use MIDI_TxCommand with a schedule
time).

If you are the creator of MIDI sequencing software that does work and you’re feeling generous enough to
send me a copy, I will give it a mention in this user guide. (^_^)

FUTURE DEVELOPMENT

IT IS VERY IMPORTANT TO NOTE THAT THERE ARE NO PLANS TO ADD MUCH IN THE
WAY OF FUNCTIONALITY TO THE USB MIDI MODULE.

What I intend to do:

• Look to supporting up to four simultaneous MIDI devices.

• Specific requests if viable, to better support existing software that uses the Acorn MIDI module
in certain (legal) ways.

• Bug fixes.

• Creeping Featuritis. I know I’m going to throw in a few things, so I’ll ’fess up that I will probably
throw in a few things.

Now for the rationale. I do believe the Acorn MIDI module interface is messy and does not necessarily lend
itself well to system-wide MIDI support. To give an example, if a MIDI timing message is received, the
(Acorn) MIDI system itself can deal with this, or it can put it into the input queue for the application to pick
up. Given that MIDI ticks are percentages of a beat and beats are percentages of a second (something like 24
per beat, and an allegro 120bpm will run at 2 beats per second, or 12 ticks per second), wouldn’t it be better to
have some mechanism to broadcast this through the OS so the application can know that a tick has happened?
Or a broadcast to know that data has been received, and by which interface? I like the idea of having “easy”
SWIs like TxNoteOn instead of having to remember MIDI command sequences, so I may preserve that, but
rationalise it a little bit to reduce the gazillion different SWIs provided by this module. For instance, a
PlayNote SWI that turns notes on (velocity non-zero) and off (velocity zero). Maybe some sort of automatic
and programmable system to extend the programme (voice) selection to cater for more modern devices that
offer rather more than the standard General MIDI defined voice set.

In short, writing an implementation of Acorn’s MIDI module for USB devices is partially to scratch a
personal itch, partially to learn about USB interfacing, but mostly just a stop-gap. It is my hope and intention
to devise something better.

As you are bothering to read this, I assume you have an interest in MIDI on modern RISC OS machines.
Therefore, I would really appreciate it if you could contact me. I would like to hear two things from you.
Firstly, I would like you to provide me with your thoughts on a potential future API. If you have to talk to
MIDI devices as an application programmer (that’s probably what you are if you are reading this!), how
would you like this to happen? How would you like to be notified of MIDI events? How would you like to
send and receive MIDI commands? Please keep it realistic, though!
Secondly, throw in your wish list. This doesn’t need to be realistic. Suggest stuff that you think would be
“epic”. Who knows, I might agree and put it in the API!

Just one note – however – there are no plans at all for any form of collusion with older Acorn-era hardware. I
have no MIDI hardware on my older machines, nor USB hardware either. The base bottom line is RISC OS
5.xx on something modern; the Beagles, the RasperryPis, the Panda and Pandora, etc. I’m sorry if this
disappoints some of you, but maybe it is time to acknowledge that the RiscPC is nearly twenty years old!
Perhaps it is time to move on...
[...and fit a RISC OS 5 ROM set into your RiscPC? :-)]

Introducing MIDI

MIDI means Musical Instrument Digital Interface. Originally specified as a serial protocol (akin to
connecting a modem), MIDI is a means of connecting electronic instruments (synthesisers and keyboards, etc)
not only to each other, but also to computers and sequencers so music can be “programmed” and played at
will. In the reverse sense, it is also possible for a keyboard to be used for music input, and there are programs
that are able to convert music played on a keyboard into notation.

While serial MIDI devices exist, they are increasingly rare as USB has become a ubiquitous protocol. Many
modern keyboards offer USB connectivity. For older keyboards, USB to serial MIDI convertors exist and can
be found for under £10 on eBay and similar. These convertors can be used for the case (as is often the case)
that the computer you wish to connect your MIDI keyboard to offers no sort of serial connection, only USB.

Internally, each MIDI instrument has a transmitter and a receiver (this is true for serial and USB alike).
These communicate with other MIDI devices using a standardised code (known as “General MIDI”) which
sends informations such as which notes to play, how hard the keys are being pressed, whether or not the
sustain pedal is in use, and all sorts of other messages, such as which “program” (voice) to select – should it
sound like a grand piano or a tubular bell?

With a MIDI interface connected to your RISC OS computer, you can use the computer to control your
musical instruments, either with software you write yourself or third-party software. The RISC OS music
scene is not particularly active these days. Unfortunately we don’t have anything to rival Sibelius (which is
ironic given that it was first developed for RISC OS). Maybe this may change in the future? Until then, you
might like to know that you can get some impressive results out of the rudimentary music editor supplied with
RISC OS – !Maestro. Just load the MIDI module, load !Maestro, load a music file (I suggest the one called
“Fanfare”), then start it playing.

Connecting it up

In the old days, there were three MIDI ports (IN, THRU, OUT) which had specific purposes.

These days, just find a USB lead that fits (it is usually the type with the big plug). Plug that into the keyboard,
then plug the normal flattish USB plug into a free USB slot on your computer (or a hub). Wait a short while
for the system to notice the device.
That’s it.

For connecting older equipment, the situation is slightly more complicated. You should have an interface
with a USB lead at one end and two chunky-looking round connectors with five pins inside at the other end.
The round connector marked “IN” plugs into the port on your instrument that says “OUT” (yes, back to
front). The one marked “OUT” goes into the port marked “IN”. The USB connector goes into your computer.
That’s all.

To test your hardware, with the keyboard/instrument connected to your computer and the MIDI module
loaded, go to the command line (press F12) and type:

*MIDIUSBSend 144 60 80

You should hear a Middle C being played. If your instrument does not stop playing the note, type:
*MIDIUSBSend 144 60 0

Programming MIDI

The MIDI module provides a number of SWI calls intended to make programming MIDI as flexible as
possible.

You may know that SWI calls correspond to the BASIC command SYS. So let’s quickly recap what SYS
looks like:

SYS "<swi name>", r0%, r1%, r2%, r3%, r4% TO r0%, r1%, r2%, r3%, r4% ; flags%
command to call registers values to send register values to receive CPU flags

Pretty much all of this, except the SWI to call, is optional. Assume you have a SWI to add two numbers,
passed in R0 and R1 and the result is returned in R2. You would call this as follows:

SYS “AddStuff”, firstnum%, secondnum% TO ,,result%
(made up name!) note the two commas

To put this into more useful practice, the SWI “MIDI_TxCommand” takes the following parameters:
R0, byte 0, is the MIDI command
R0, byte 1, is the first data byte (if required)
R0, byte 2, is the second data byte (if required)
R0, bits 24-25, are optional (and not currently supported)
R0, bits 28-31, are the port (MIDI device) number (will currently be zero)
R1 must be zero

So if you recall from the previous page, the MIDI command to broadcast a middle C is 144,60,80. Therefore
we would construct our data word as follows:

data% = (80 << 16) OR (60 << 8) OR 144

Then we will pass this as a SWI call:
SYS "MIDI_TxCommand", data%, 0

You should have heard a middle C sound on your instrument.

There’s another way to do this. The “MIDI_TxNoteOn” SWI sends the command to play a note. It takes
the following parameters:

R0 is the note to play (60 is middle C; each number up/down is one semitone)
R1 is the velocity of the key (0 is silent (this usually stops a note playing), 127 is extremely hard)

Which means that:
SYS "MIDI_TxNoteOn", 60, 80

would have also played a middle C.

To read data, we will look at the “MIDI_Init” SWI. This scans for MIDI devices, registers them, and then
returns the number of devices found in R0, like this:

SYS "MIDI_Init", 0 TO devices%
PRINT "You have "+STR$(devices%)+" MIDI devices connected."

Please refer to the BBC BASIC Manual, or Google, for further details on the SYS command, if necessary.

SWI commands

SWI commands are listed numerically. There are many. Don’t panic!
(well, maybe panic a little, but do it quietly or you’ll scare the sheep)

MIDI_SoundEnable
(&404C0)

This command is recognised, but it has no effect.

MIDI_SetMode
(&404C1)

This command is recognised, but it has no effect. Replies with dummy data.

On exit R0 = 1
R1 = byte 0 is 1, byte 1 is 1.

MIDI_SetTxChannel
(&404C2)

Specifies the port (device) and MIDI channel for all subsequent MIDI_Tx..... commands.
This is all of the transmission commands except for MIDI_TxByte and MIDI_TxCommand.

On entry R0 = Channel number (1-64) or 0 to read.
1-16 means channels 1-16 of device 0
17-32 means channels 1-16 of device 1 (not currently supported)
33-48 means channels 1-16 of device 2 (not currently supported)
49-64 means channels 1-16 of device 3 (not currently supported)

On exit R0 = New (or current, if reading) channel number

If the channel points to a device that is not present, an error will be raised.

MIDI_SetTxActiveSensing
(&404C3)

This functionality is not currently implemented. Replies with dummy data.

On exit R0 = 0 (= all devices: Active Sensing not enabled; not receiving Active Sensing data)

MIDI_InqSongPositionPointer
(&404C4)

This command is recognised, but it has no effect. Replies with dummy data.

On exit R0 = 0 (position)
R1 = 48 (bit 4 = system messages in RX buffer; bit 5 = no special treatment of them)

MIDI_InqBufferSize
(&404C5)

Despite what the name may imply, this call returns the number of unused bytes in the
receive or transmit buffer.

The complete buffer sizes are:
Receive buffer – 1024 bytes
Transmit buffer – 3 bytes

On entry R0 = 0 to read the receive buffer size
1 to read the transmit buffer size
and bits 1-2 specify the MIDI device (0-3)

On exit R0 = Number of bytes free in the selected buffer.

MIDI_InqError
(&404C6)

Returns the value of the MIDI error flag, byte 0 for device 0, byte 1 for device 1, etc.
Reading the error byte clears the error condition.

On entry –

On exit R0 = Four bytes, one per device, giving the current error code for each device.

Possible values of the error byte are:
 0 (0) There is no current error to report.

“A” (65) Active Sensing failure (not currently supported)
“B” (66) Receive buffer is full, and data has been lost.
“D” (68) Transmit data has been discarded due to unrecognised command/data.
“X” (88) USB device has been disconnected.
“/” (???) USB device not present.

The errors “F”, “L”, “O”, “T”, and “V”, are not supported (UART/interpreter errors that are not
applicable in this implementation), while “B”, “X” and “/” are our own (new) error codes.

MIDI_RxByte
(&404C7)

Returns the next received MIDI byte. It is recommended that MIDI_RxCommand be used in
preference to byte reads.

On entry R0 = Device number (should be 0)
On exit R0 = Received byte, or 0 if there is no data to return.

R1 = 0

Does not return an error if the buffer has overflowed. The background error event will
be raised, and the error byte (check with MIDI_InqError) will be ‘B’, if overflow occurred.

MIDI_RxCommand
(&404C8)

Returns the next complete MIDI command as a set of bytes.

On entry R0 = Device number (should be 0)
On exit R0 = byte 0 is command

byte 1 is data byte 1 (or 0)
byte 2 is data byte 2 (or 0)
bits 24-25 are the number of bytes (0-3) in this command
bits 28-31 are the MIDI device that this message was received by

R1 = 0

Note that System Exclusive messages will be received as the command &F0 and a sequence
of data bytes (across however many calls to MIDI_RxCommand are necessary) until done.

Does not return an error if the buffer has overflowed. The background error event will
be raised, and the error byte (check with MIDI_InqError) will be ‘B’, if overflow occurred.

MIDI_TxByte
(&404C9)

Inserts a byte into the transmit buffer to assemble a MIDI command for transmission.
Note that unlike the original MIDI module that would send the byte immediately, USB MIDI
works with a series of command packets, so a packet is assembled and transmitted in its
entirety.

On entry R0 = byte 0 is the byte to transmit
bits 28-31 specify the MIDI device (0-3) to transmit from

On exit –

Does not return an error if the byte is discarded due to incorrect type (the commands are
vetted). Use MIDI_InqError to check the status is not “D”.

MIDI_TxCommand
(&404CA)

Transmit a complete MIDI command.

On entry R0 = byte 0 is command
byte 1 is data byte 1 (or 0)
byte 2 is data byte 2 (or 0)
bits 24-25 are the number of bytes (0-3) in this command
bits 28-31 are the MIDI device that this message was received by

R1 = 0 (immediate)
On exit R0 = 0, or -1 if R1<>0 on entry

Running status is not supported, only complete commands will be sent.

Any partial data in the transmit buffer (via Midi_TxByte) will be overwritten by the data
provided in this command.

Commands are sanitised, and will be discarded (without error) if the command byte does
not have bit 7 set, or any of the data bytes do have bit 7 set.
The exception to this rule is when sending a System Exclusive message, in which case any
data will be accepted after &F0 until &F7 is passed.

If R1 was non-zero on entry, R0 will be returned as -1 and the command will not have been
sent. This version of the MIDI module does not support scheduling.
SysEx messages cannot currently be sent.

MIDI_TxNoteOff
(&404CB)

Transmits a MIDI “Note Off” command.

On entry R0 = Note (0-127, middle C is 60 and each digit represents one semitone)
R1 = Velocity (0-127)

On exit –

MIDI_TxNoteOn
(&404CC)

Transmits a MIDI “Note On” command.

On entry R0 = Note (0-127, middle C is 60 and each digit represents one semitone)
R1 = Velocity (0-127; using velocity 0 is an alternative to Note Off; 64 is “average”)

On exit R1 = -1 if some sort of error ocurred.

Does not return an error if the MIDI device is not present. It sets R0 to -1 instead. This
is so older programs unaware of USB disconnection don’t crash when the device is removed.

MIDI_TxPolyKeyPressure
(&404CD)

Transmits a MIDI “Poly Key Pressure” command for after-touch effects. The exact effect
of this command varies depending on the receiving device and the selected voice.

On entry R0 = Note (0-127, middle C is 60 and each digit represents one semitone)
R1 = Pressure value (0-127)

On exit –

MIDI_TxControlChange
(&404CE)

Transmit a MIDI “Control Change” command.

On entry R0 = Control number
R1 = Control value

On exit –

Control numbers 122-127 are reserved for Channel Mode Messages, which may be either
transmitted using this SWI or by the following 6 SWIs (MIDI_TxLocalControl to
MIDI_TxPolyModeOn).

MIDI_TxLocalControl
(&404CF)

Transmits a MIDI “Local Control” command (control number 122).

On entry R0 = 0 for Local Control Off, or
127 for Local Control On

On exit –

MIDI_TxAllNotesOff
(&404D0)

Transmits a MIDI “All Notes Off” command (control number 123).

On entry/exit –

MIDI_TxOmniModeOff
(&404D1)

Transmits a MIDI “Omni Mode Off” command (control number 124).

On entry/exit –

MIDI_TxOmniModeOn
(&404D2)

Transmits a MIDI “Omni Mode On” command (control number 125).

On entry/exit –

MIDI_TxMonoModeOn
(&404D3)

Transmits a MIDI “Mono Mode On” command (control number 126).

On entry R0 = The number of channels to respond to (1-16), or 0 to respond on all supported
channels.

On exit –

Refer to your MIDI device handbook, as multi-timbral devices frequently have interesting
interpretations of what this means.

MIDI_TxPolyModeOn
(&404D4)

Transmits a MIDI “Poly Mode On” command (control number 127), and thus ends Mono
Mode.

MIDI_TxProgramChange
(&404D5)

Transmits a MIDI “Program Change” command, that is to say to instruct the instrument to
change its program/voice/tone/patch/instrument. In other words, tell it to stop being a piano
and start being a violin (if supported, that is).

On entry R0 = Program (voice) number (0-127)
On exit –

The General MIDI specification defines 128 voices, which are arranges as 16 “families”
(piano, reed, brass, etc) each containing 8 instruments.

PIANO CHROMATIC PERCUSSION
1 Acoustic Grand 9 Celesta
2 Bright Acoustic 10 Glockenspiel
3 Electric Grand 11 Music Box
4 Honky-Tonk 12 Vibraphone
5 Electric Piano 1 13 Marimba
6 Electric Piano 2 14 Xylophone
7 Harpsichord 15 Tubular Bells
8 Clavinet (not Clarinet) 16 Dulcimer

ORGAN GUITAR
17 Drawbar Organ 25 Nylon String Guitar (acoustic)
18 Percussive Organ 26 Steel String Guitar (acoustic)
19 Rock Organ 27 Electric Jazz Guitar (electric)
20 Church Organ 28 Electric Clean Guitar (electric)
21 Reed Organ 29 Electric Muted Guitar (electric)
22 Accoridan 30 Overdriven Guitar
23 Harmonica 31 Distortion Guitar
24 Tango Accordian 32 Guitar Harmonics

BASS SOLO STRINGS
33 Acoustic Bass 41 Violin
34 Electric Bass (finger) 42 Viola
35 Electric Bass (pick) 43 Cello
36 Fretless Bass 44 Contrabass (double bass)
37 Slap Bass 1 45 Tremolo Strings
38 Slap Bass 2 46 Pizzicato Strings
39 Synth Bass 1 47 Orchestral Strings
40 Synth Bass 2 48 Timpani (a drum?)

ENSEMBLE BRASS
49 String Ensemble 1 57 Trumpet
50 String Ensemble 2 58 Trombone
51 SynthStrings 1 59 Tuba
52 SynthStrings 2 60 Muted Trumpet
53 Choir Aahs 61 French Horn
54 Voice Oohs 62 Brass Section
55 Synth Voice 63 SynthBrass 1
56 Orchestra Hit 64 SynthBrass 2

REED PIPE
65 Soprano Sax 73 Piccolo
66 Alto Sax 74 Flute
67 Tenor Sax 75 Recorder
68 Baritone Sax 76 Pan Flute
69 Oboe 77 Blown Bottle
70 English Horn 78 Skakuhachi (a bamboo flute)
71 Bassoon 79 Whistle
72 Clarinet 80 Ocarina (like a ceramic seashell with holes in it)

SYNTH LEAD (synth lead melody) SYNTH PAD (continual tone)
81 Lead 1 (square) 89 Pad 1 (new age)
82 Lead 2 (sawtooth) 90 Pad 2 (warm)
83 Lead 3 (calliope (steam organ)) 91 Pad 3 (polysynth)
84 Lead 4 (chiff) 92 Pad 4 (choir)
85 Lead 5 (charang (like a lute)) 93 Pad 5 (bowed)
86 Lead 6 (voice) 94 Pad 6 (metallic)
87 Lead 7 (fifths) 95 Pad 7 (halo)
88 Lead 8 (bass + lead) 96 Pad 8 (sweep)

SYNTH EFFECTS ETHNIC
97 FX 1 (rain) 105 Sitar (Indian/Pakistani guitar)
98 FX 2 (soundtrack) 106 Banjo (you watched Deliverance, right?)
99 FX 3 (crystal) 107 Shamisen (Japanese 3-string guitar-like)
100 FX 4 (atmosphere) 108 Koto (Japanese 13 strings-on-a-board)
101 FX 5 (brightness) 109 Kalimba (African plucked metal tines)
102 FX 6 (goblins) 110 Bagpipe
103 FX 7 (echoes) 111 Fiddle
104 FX 8 (sci-fi) 112 Shanai (Iran/India/Pakistan double-reed oboe)

PERCUSSIVE SOUND EFFECTS
113 Tinkle Bell 121 Guitar Fret Noise
114 Agogo 122 Breath Noise
115 Steel Drums 123 Seashore
116 Woodblock 124 Bird Tweet
117 Taiko Drum 125 Telephone Ring
118 Melodic Tom 126 Helicopter
119 Synth Drum 127 Applause
120 Reverse Cymbal 128 Gunshot

Note that the voices are numbered 1 to 128 while the MIDI commands count from zero, thus
you should subtract one from the above numbers when selecting which voice to play.

Modern synthesisers and keyboards offer a far greater variety of voices, such as the Erhu
(Chinese 2-string fiddle), Tamboura, and Church Bells, among many others. However the
methods used to select these additional voices are more complicated.

Usually you would issue a “Bank Select” command (controller 0 (coarse) and 32 (fine)) to
switch the bank, then a Program Select to choose the specific voice.
Unfortunately, the allocation of voices and the methods of accessing them varies between
manufacturers and even devices; so you will need to consult your handbook for specifics.

MIDI_TxChannelPressure
(&404D6)

Transmits a MIDI “Channel Pressure” command. This is akin to modifying the velocity as
the note is playing and may change the modulation, pitch, or volume depending on the
voice and instrument capabilities.

On entry R0 = Pressure value (0-127)
On exit –

The difference between KeyPressure (aftertouch) and ChannelPressure is that KeyPressure is
applied to individual notes and would usually be expected to control the LFO (giving a
vibrato effect) while ChannelPressure is applied to all notes playing on the channel and is
usually expected to control the VCA (volume).

If you want to know more about LFO, VCA, and music synthesis in general, there is a good
introductory description at http://beausievers.com/synth/synthbasics/

MIDI_TxPitchWheel
(&404D7)

Transmits a MIDI “Pitch Wheel” command. This alters the pitch of the voice by a few cents
to transpose the instrument slightly. This permits you to perform effects such as a user
controlled vibrato or to ‘slide’ (portamento) into the next note to be played, and so on. How
this is implemented depends upon the instrument’s capabilities.

On entry R0 = Pitch change (0-16383 (0-&3FFF) with 8192 (&2000) being ‘centre’ position)
On exit –

The recommended range of the pitch wheel is +/- 2 semitones; however this is not
standardised. Some instruments permit the pitch wheel range to be configured (RPN #0).

Why may the pitch alteration be necessary? MIDI, and Western music in general, works on
a system of twelve tone equal temperament. As such, some forms of music (Arabic music
(which ostensibly uses a 24 tone system with quarter tones; though the exact iterpretation
of the tonal system differs by region), or music using exact frequencies (such as specifying
500Hz)) cannot easily be represented by MIDI note values alone. By using a combination of
a MIDI note and a pitch modification, any frequency is available for play.
The range is a 14 bit number with some eight thousand offsets from the centre point
permitting melismatic adjustment of the music; though implementation limitations may
throw away a lot of the data (for instance, working only in +/- 127 steps).

MIDI_TxSongPositionPointer
(&404D8)

Transmits a MIDI “Song Position Pointer”. This does not automatically update the internal
copy as song positions are not supported by the MIDI module.

On entry R0 = Song Position Pointer (0-16383 (0-&3FFF))
On exit –

Songs are assumed to start at MIDI beat 0. The value specified is the MIDI beat upon which
to start the song. Each MIDI beat spans six MIDI clocks. There are 24 MIDI clocks in a
crotchet (quarter note), so each beat is the same duration as a semiquaver (16th note).

MIDI_TxSongSelect
(&404D9)

Transmits a MIDI “Song Select”. This is for choosing a specific song stored in the
instrument for playback.

On entry R0 = Song number (0-127)
On exit –

Song #0 should play the first song, even though most instruments that store songs will
display them to the user counting from 1.

MIDI_TxTuneRequest
(&404DA)

Transmits a MIDI “Tune Request” command. This is for older synthesisers with oscillator
circuits, and most likely doesn’t do anything on digital synthesisers.

On entry / exit –

MIDI_TxStart
(&404DB)

Transmits a MIDI “Start” command. This resets the beat counter and the Song Position to
zero and causes the instrument to begin playback of the previously selected song.
(there are no internal effects as timing is not implemented in the MIDI module)

On entry / exit –

MIDI_TxContinue
(&404DC)

Transmits a MIDI “Continue” command. This causes the instrument to continue playback of
the previously selected song. As for MIDI_TxStart, there are no internal effects.

On entry / exit –

The difference between this and MIDI_TxStart is that the beat counter is not reset.

What this means is – to play a song:
Select the song with MIDI_TxSongSelect
Start it playing with MIDI_TxStart

Or otherwise – to play a song from a specific position:
Select the song with MIDI_TxSongSelect
Set the playback start position with MIDI_TxSongPositionPointer
Start it playing from that position with MIDI_TxContinue

MIDI_TxStop
(&404DD)

Transmits a MIDI “Stop” command. The instrument will cease playing the song, though it
will remember the current playback position (so a call to MIDI_TxContinue can resume
playing from where it was stopped).

On entry / exit –

MIDI_TxSystemReset
(&404DE)

Transmits a MIDI “System Reset” command. This resets the instrument to a state that is
usually the same as its power-on state.

On entry / exit –

The effect of this command depends upon the instrument, however generally speaking:
• All playing notes will be silenced, any song playback will be stopped.
• The local keyboard will be enabled.
• Running status and timers will be reset.
• The device may reset to the default voice.
• The device may reset to Omni, Poly mode if there is no default saying otherwise.
• Anything else specific to the device.

This command should not be used as a matter of course; it should only be sent in response
to a specific request from the user.

MIDI_IgnoreTiming
(&404DF)

This command is recognised, but it has no effect.

On entry / exit –

MIDI_TxSynchSoundScheduler
(&404E0)

This command is recognised, but it has no effect. Replies with dummy data.

On entry –
On exit R0 = 0 (specifies sound scheduler is synchronised to the Sound Interrupt (default))

MIDI_FastClock
(&404E1)

This command is recognised, but it has no effect. Replies with dummy data.

On entry – (would be <0 to read value; 0 to stop fast clock; >0 to set the fast clock Tx rate)
On exit R1 = 0

MIDI_Init
(&404E2)

Reset the internal MIDI system status, or perform certain partial resets.

On entry R0 = 0 to reset everything
bit 1 set to clear receive buffers
bit 2 set to clear transmit buffer (this is only useful if using TxByte)
bit 3 set ignored
bit 4 set clear current error (if possible, some like “no USB device” cannot be

cleared!)
bit 30 set ignored (System Realtime Messages are always put into RX buffer)
bit 31 set ignored (no special actions are performed on System Realtime Msgs)

On exit R0 = Number of MIDI ports installed (subtract one from the maximum port number)

There is a slight difference between this MIDI module and the Acorn original in reporting
the number of MIDI ports. USB MIDI devices are allocated a port number in the order that
they are connected (or if already connected, in the order they are presented to the system).
The value returned in R0 is the number of MIDI devices currently available; which can be
zero.

MIDI_SetBufferSize
(&404E3)

This command is recognised, but it has no effect. Replies with dummy data.

On entry –
On exit R0 = 1024 (buffer size in bytes)

R1 = 1024 (total number of bytes claimed; is not ×5 because data is not timestamped)

The buffers are fixed and cannot be altered.

MIDI_Interface
(&404E4)

Any attempts to call this SWI will result in an error being raised.

The original MIDI module ran on 8MHz hardware and message timing is in the order of
microseconds. Keep in mind that MIDI runs at 31250 bits per second and a lot of computer
systems of this age/clockspeed struggle with more than 19200bps. To put this into context,
MIDI can pass just over 3000 bytes per second, which on a system running flat out could
equate to 1000-2000+ commands every second. To further compound the issue, the Acorn
MIDI hardware did not offer much in the way of buffering, so a fast software response time
is important. The original MIDI module was written in pure assembler to go as quickly as
possible (this was in the late ’80s when using C was not very commonplace); and to further
provide speed improvements over something that needed a very fast response time, Acorn
provided a SWI that returns some pointers into the MIDI module, such that R0 is a pointer
to the MIDI module workspace, and R1 is the address of the SWI handler code. By
providing this, the user can place the computer into SVC mode, place the SWI offset
(counting from the first SWI, so it is basically the SWI number with &40400 subtracted)
into R11, place the workspace pointer into R12, and then jump directly into the module,
bypassing the entire operating system SWI decode and call mechanism.

In this day and age, we (should!) recoil in absolute horror at the idea of branching directly into
module space from a user mode application. I get it, speed was of critical importance, but I
figure people might say the same thing as they’re going 100kph down the wrong side of the
road because <insert lame excuse here>. Really, there are some things that are just plain
icky and this is one of them. This is like olive flavoured ice cream. Just... Don’t...

MIDI_USBInfo
(&404EA)

Returns information on the MIDI subsystem.

On entry R0 = 0 = General information
1-4 = Specific information on a USB MIDI device

If R0 = 0 then:
On exit R0 = Number of connected MIDI devices (0-4).

R1 = USB logical device numbers such that the first device is in byte 0, the fourth
device is in byte 3.

R2 = Pointer to the internal raw receive buffer.
R3 = Undefined.
R4 = Undefined.
R5 = 1 if the global poll ticker is currently in use, else 0.
R6 = Last poll interval, in centiseconds.
R7 = Pointer to internal device data table (this is for debugging, you should not use it).

If R0 = 1-4 then:
On exit R0 = Number of bytes used (remaining to be read) in the device’s receive buffer;

or -1 if the device is not valid (and if -1, no other data will have been set).
R1 = USB logical device number of this device.
R2 = Pointer to the internal raw receive buffer.
R3 = Pointer to device’s receive buffer.
R4 = Pointer to device’s transmit buffer.
R5 = 1 if this port is receiving on a ticker callback, else 0.
R6 = Value of lasterror byte for this port (same as for MIDI_InqError).
R7 = Pointer to internal device decriptor (this is for debugging, you should not use it).

Everywhere else, MIDI devices are numbered 0-3 however this SWI takes device numbers
1-4. This is so passing zero can provide a generic reply.

At this time, only the first port/device is valid, anything else will reply with -1.

The device descriptor array is as follows, but this is for completeness and may change:

typedef struct device_descriptor
{
 int isvalid; // Non-zero if device is valid.
 char id[8]; // Device ID, like "USB10".

 int lasterror; // Last error - 0, ‘A’, ‘B’, ‘D’, ‘X’, or ‘/’.
 int iep; // IN endpoint
 int oep; // OUT endpoint
 int ifp; // IN file handle
 int ofp; // OUT file handle
 int xxx; // unused
 int yyy; // unused
 char *rxbuffer; // Pointer to our virtual buffer
 int bufferhead; // Buffer head pointer
 int buffertail; // Buffer tail pointer
 int rxontick; // Are we RXing on a ticker?
 char *txbuffer; // Pointer to our TX buffer
 int txptr; // Pointer (count) to stuff in TX buffer
}

MIDI_Options
(&404EB)

This command has not yet been implemented.

On entry R0 = Options bitmap, or -1 to read
On exit R0 = Value of options bitmap.

R1 to R3 are currently undefined on entry and exit; assume they are corrupted.

The available options are:
bit 0 Do not broadcast MIDI beat event (not yet implemented).
bit 1 Do not broadcast device (dis)connection service calls.
bit 2 Do not broadcast device (dis)connection events.
bit 3 If receive buffer fills up, throw it all away and start again (default is to

stop receiving until buffer is empty).
bit 4 Do not permit multiple devices (only allow the first device).
bit 5 Run in Shadow Mode (not yet implemented).
bit 6 Run in Epic Mode (not yet implemented).

bits 7+ Undefined.

Quick definitions:

Shadow Mode: data sent to device 0 is transmitted to all connected devices; data sent
to any other device is discarded. This permits one playback to play the same thing on
up to four devices.

Epic Mode: data sent to device 0 will be redirected as follows:
channels 0-3 Sent to device 0
channels 4-7 Sent to device 1 (as channels 0-3, if present), else to device 0
channels 8-12 Sent to device 0
channels 13-14 Sent to device 1 (as channels 4-5, if present), else to device 0
channel 15 Sent to device 0

The purpose of Epic Mode is for me to orchestrate music that is to be played on a
Yamaha keyboard synthesiser (device 0) and a Roland keyboard synthesiser (device 1)
which has good bass capabilities. It is purely to scratch a personal itch. (^_^)

Not finalised, liable to change!

Commands

The following commands are provided only for compatibility, they have no effect.

*MidiSound in|out|off [<port>]
*MidiTouch on|off
*MidiChannel <channel (1-16)>
*MidiMode <mode (1-4)>
*MidiStart <time>
*MidiStop
*MidiContinue

The USB MIDI module also provides the following three commands:

*MidiUSBSend <command> [<parameter1> [<parameter2>]]
This command sends a MIDI command to MIDI device 0. The command is any valid General MIDI 1.0
command, so the following should cause a Middle C to be played:

*MidiUSBSend 144 60 64

*MidiUSBInfo
This command reports information on the USB MIDI setup, looking something like this:

MIDI USB information:
 Current MIDI device is USB7,
 using IN endpoint 1 (file handle 243)
 and OUT endpoint 2 (file handle 242)

 Current TX channel is 0 (channel 1 on port 0).
This will be expanded when multiple devices are supported.

*MidiUSBDebug
This command reports geeky information on the USB MIDI setup, something like this:

MIDI USB debug information:
 Device #0:
 Is valid? Yes
 USB device "USB7"

 Lasterror flag 66
 IN endpoint 1
 OUT endpoint 2
 IN file handle 243
 OUT file handle 242
 RX virt buffer &20296534 (1024 bytes)
 RX buffer head 1021
 RX buffer tail 0
 Periodic RX? No

 RX interval 10 cs
 TX virt buffer &2004FF34 (8 bytes)
 TX buffer ptr 0
 Raw RX buffer &201ED1B4 (256 bytes)

 Ticker in use No

This is intended for debugging, not playing with. ;-)

Service calls

The MIDI module makes four service calls.

Service_MIDI
(&58)

The Service_MIDI service call provides some information on the module status, as defined by the Acorn
MIDI module:

R0 = 0 = module has initialised
1 = module is dying

Additionally, the USB MIDI module provides these service calls:

R0 = 10 = a USB MIDI device has been connected
11 = a USB MIDI device has been disconnected

Events

The MIDI module provides several events.

Event_MIDI
(&11)

The original MIDI module provided the following events:

R0 = &11 (Event_MIDI)

R1 = 0 = MIDI_DataReceivedEvent
A receive buffer was empty and has now received data.

1 = MIDI_ErrorEvent
An error has occurred in the background (use the MIDI_EnqError SWI to
determine what the error was).

2 = Unimplemented (to do with scheduling)

The USB MIDI module adds the following events:

10 = MIDI_DeviceConnectedEvent
A USB MIDI device has been connected.

11 = MIDI_DeviceDisconnectedEvent
A USB MIDI device has been disconnected.

(this page has been left blank for your notes)

