
Amélie serial communications
Preliminary specification - 2006/11/12

Introduction
In order to simplify serial communications, the BIOS makes it easier for applications to interface with a
remote computer by serial means.

Two buffers are implemented:

1. 128 byte receive buffer

2. 96 byte transmit buffer

In order to send serial data, you should call the BIOS routine, passing a byte or a pointer to a null-
terminated string (as appropriate).
In order to receive serial data, hook into the SERIAL_RXSTRING vector and/or the SERIAL_RXBYTE
vector.

There are no methods for controlling the serial format. The BIOS sets up 9600bps, 8N1 during
system reset. If you should desire something different, you will need to poke the ACIA yourself.

Byte suppression
In normal use, all ASCII 13 codes are discarded. This is done because RISC OS uses <10> as a line
separator, while DOS/Windows systems use <10><13>. By omitting all <13>s, you do not need
to modify your comms software to communicate with Amélie.

Binary mode
In binary mode, selected by writing a byte in Page Zero, all <13>s will be passed into the receive
buffer, and the SERIAL_RXSTRING vector is never called.

The BIOS interface
This describes the BIOS interface to the serial system. This is what you need to know in order to use
the serial system.

There are seven calls. Three to receive, two to send, and two status calls. In order to use the serial
system, you should set A to the entry code, set X and Y (as applicable), and then JSR &FFE2.
It should be assumed that registers are corrupted. Where the entry/exit conditions do not specify a
specific register, you may assume that the contents are unimportant (entry) or undefined (exit).

SERIAL_ISACTIVE (&FFE2, entry 0)
This lets you know whether or not serial communications are available.
On entry:

A = 0
On exit:

X = Zero if no serial comms, else non-zero.
Y = Transmit buffer bytes free.

SERIAL_DISABLE (&FFE2, entry 1)
This allows you to forcibly disable serial communications when they are enabled. Note that the user
can restore communications by deasserting, then reasserting, the DCD line.
On entry:

A = 1
X = 0

On exit:
Registers undefined.

This call will not fail if serial is already disabled, or not available.
AMSERIAL.WRD Page 1 of 4 2006/11/12, 15:20 CET



Amélie serial communications - preliminary

SERIAL_GETBYTE (&FFE2, entry 2)
This returns the next byte in the serial buffer.
On entry:

A = 2
On exit:

X = Byte
Y = Is zero if no byte available, else non-zero.

SERIAL_PEEKBYTE (&FFE2, entry 3)
This returns the next byte in the serial buffer without altering the read pointer.
On entry:

A = 3
On exit:

X = Byte
Y = Is zero if no byte available, else non-zero.

SERIAL_GETSTRING (&FFE2, entry 4)
This copies an entire chunk of the serial buffer in to a nominated address. The space that you provide
does not need to be any larger than 128 bytes, and it cannot span a page boundary.
Note that the BIOS calls the SERIAL_RXSTRING vector upon receiving ASCII 10. Therefore the string
returned will be terminated by ASCII 10. It is valid for the entire string returned to be a single ASCII
10.
On entry:

A = 4
X = High byte (page) of your buffer address
Y = Low byte (offset) of your buffer address

On exit:
Y = Is zero if no data available, else non-zero.

SERIAL_SENDBYTE (&FFE2, entry 5)
This adds a single byte to the output buffer.
On entry:

A = 5
X = Byte to send

On exit:
X = Is zero if transmit buffer overrun, else non-zero.
Y = Is zero if no serial available, else non-zero.

SERIAL_SENDSTRING (&FFE2, entry 6)
This copies a null-terminated string into the serial buffer. The location of the string cannot span a page
boundary.
On entry:

A = 6
X = High byte (page) of your buffer address
Y = Low byte (offset) of your buffer address

On exit:
X = Is zero if transmit buffer overrun, else non-zero.
Y = Is zero if no serial available, else non-zero.

Buffer behaviour
It is important to realise a few things about the serial buffering.

Receive buffer
This is a buffer of 128 bytes. There are two pointers, a head and a tail. The head points to the location
of the next write offset, while the tail points to the location of the next read.

On the following page is an explanation of the head and tail pointers in action...

AMSERIAL.WRD Page 2 of 4 2006/11/12, 15:20 CET



Amélie serial communications - preliminary

Serial buffer at &xx00:
&xx00 R <-- tail
&xx01 i
&xx02 c
&xx03 k
&xx04 <-- head

In the example above, the BIOS has received "Rick", but the application code has not read anything.
Upon reading, when the tail meets the head, we can assume the buffer has been cleared and the
pointers are both reset to zero.

In order not to swamp the buffer, use is made of the CTS line. When 128 bytes have been received,
CTS is deasserted. If further data comes in (i.e. the remote system is ignoring the handshake), that
subsequent data will be silently discarded - as this will be taken as a failing of the remote system and
not of Amélie.
In addition to this, CTS is deasserted when the BIOS calls the SERIAL_RXSTRING vector. CTS will
then be reasserted when the application calls a serial read routine. The reason for this is so that, upon
receiving a string, the application can copy it out (and the buffer then cleared) without worrying about
subsequent data being appended after the string. Data subsequently received will be appended, but this -
again - is taken as a fault of the host for ignoring the handshake.

Transmit buffer
This is a buffer of 96 bytes. The application code may write strings and bytes to this buffer (the head
pointer). The data contained in the buffer is written out under interrupt (the tail pointer). As for the
receive buffer, if the head and tail pointers equal, they are reset to zero as that will mean the buffer has
been sent.
If there are no serial communications, or it is disabled, then all data sent to the buffer is silently
discarded (and the Y register set to zero on return). This may sound bizarre, however it is to allow in-
line debugging data and/or status messages without worrying about the overheads of "is serial
available? is it ready?". Just put bytes in the transmit buffer - if there is serial, they'll be sent. If not,
they'll be tossed.

If the transmit buffer should exceed 96 bytes, then the entire buffer contents will be tossed. You may
use the SERIAL_ISACTIVE routine to read the number of bytes free in the transmit buffer. If this
eventuality should come to pass, the X register will be zero on return.

Internal serial handling
This section is not necessary for using the serial system. It is here for those who would like a deeper
explanation of the serial system.

The ACIA causes an interrupt on one of three conditions - a change of state on the DCD line, a
character received, and a character transmitted. There is a fourth interrupt, a change of state on the
DSR line, but this is not implemented.

* Change of DCD state
If DCD has been asserted, we can flag serial as being active, else it is not connected. Amélie
provides a link to jumper DTR to DCD at the serial connection for devices that don't set DCD
themselves.

* Serial byte received (normal mode)
If the serial buffer is not full, the byte is read and placed in the receive buffer, unless the byte
was ASCII 13 in which case it is silently discarded.
If the receive buffer is now full, serial activity is suspended (to deassert CTS). Serial activity
will not be resumed until the buffer has been cleared.
If the byte received was ASCII 10, then the SERIAL_RXLINE vector will be called, else the

SERIAL_RXBYTE vector will be called.
There is no case handling for data received when CTS is not asserted as it appears from the
6551 datasheet that the receiver is inactive in this state.

AMSERIAL.WRD Page 3 of 4 2006/11/12, 15:20 CET



Amélie serial communications - preliminary

* Serial byte received (binary mode)
This is largely the same as normal mode reception - so I shall just describe the differences. It is
actually the same code performing both implementations, however I felt adding this to the above
would just clutter things.
The byte read from the ACIA is copied to the receive buffer. All bytes are copied, including
ASCII 13. Accordingly, the BIOS does not ever call the RXLINE vector, only SERIAL_RXBYTE
for each byte received.

* Serial byte transmitted
When a byte is written to the transmit buffer, if the tail pointer is zero then the first byte is
copied to the ACIA to start off the transmit process.
Then, upon receiving a "byte sent" IRQ, the transmit buffer will be examined. If there is
another byte to send (i.e. head pointer is not zero), then the byte is copied to the ACIA and the
tail pointer incremented. If head and tail now match, the buffer has been entirely transmitted
and thus the pointers will be reset. Upon the final "byte sent" IRQ, the BIOS will see that the
head pointer is zero so no further action will be taken.

As you can see, the BIOS takes care of serial communications. It does so by way of the ACIAIRQ
vector, so you could - if required - replace the serial system.
The BIOS sets the serial communications protocol to 9600 baud, 8 data bits, 1 stop bit, no parity. It
sets this once on system reset. If you require something else, you can poke the hardware directly for,
perhaps, 2400 7E1?

Rick, 2006/11/12
heyrick -at- merseymail -dot- com
http://www.heyrick.co.uk/amelie/

AMSERIAL.WRD Page 4 of 4 2006/11/12, 15:20 CET


