
SEPTEMBER/
OCTOBER 1995

Issue 4. The ULTIMATE techie magazine for Acorn Enthusiasts.

© opyright

In this issue:
☞ How floppydiscs/harddiscs work.
☞ Know your SysOp’s for the Acorn Show.
☞ About software copyright.
☞ Simple Centronics interface.
☞ Ants!
☞ And much much more.....

P
u

b
li
s
h

e
d

 b
y
 Y

o
u

r
P

ri
n

te
r

Index:
Page 2 Index
Page 3 Editor’s Pages
Page 5 The rise of ASCII from Baudot & EBCDIC.
Page 7 Floppydiscs/harddiscs.
Page 9 Know your SysOp’s for the Acorn Show.
Page 12 More about Tornado.
Page 21 The Finishing Touch.
Page 28 Software copyright - the big C.
Page 33 Ants!?
Page 34 Simple Centronics Control Interface.
Page 35 Not so Easy PeeC - dark secrets.
Page 36 Analysis of Frobnicate Distribution and

survey.
Page 37 Reader’s Letters.
Page 38 Feetch, feetch!
Page 39 Qu’est-ce que c’est, ça?
Page 40 NoticeBoard.

Distribution stuff:
Editor Richard Murray
Contributors . . Richard Murray, Niall Douglas, James

Larcombe, Nava Whiteford.
Graphics Richard Murray, Chris Jackson, Dane

Koekoek, whoever did those Acorn Show ’94
pictures...

This magazine is distributed locally in hardcopy form and widely on Arcade and Digital Databank BBSs
 as archived files. You may print the files UNALTERED.

Back issues are available from Richard Murray at Encina BBS, as are stylesheets, fonts and
logos/graphics.

The editor can be contacted by fido netmail as “Richard Murray” at 2:254/86.1.
Feel free to comment or add your own submissions.

Unless otherwise stated, the contents of this magazine including all articles and images are
copyright. Copyright and intellectual property rights belong to Richard Murray unless otherwise
stated. All copyrights and/or trademarks used are gratefully acknowledged.

All opinions expressed are those of the article author and not necessarily that of ‘Frobnicate’ in
general.

All reasonable care is taken in the production of this magazine, but we will not be legally liable for
errors, or any loss arising from those errors. As this magazine is of a technical nature, don’t do
anything you are unsure of.
Reliance is placed in the contents of this magazine at the readers’ own risk.

Editor’s Pages
Prepared in Ille-Et-Vilaine, France.

Again, a late Frobnicate. Apologies to all of you
readers. You see, we went to France for about 10
days to get the roof reslated and well… The roofer
never turned up. The car bust. The AA (Europe)
ordered the wrong part all the way from Japan. Then
the delay in getting a roofer. Now things are running
kinda to schedule – 20 days later. :-(

The dollar has been devalued, I’m now a firm
believer in “Murphy’s Law” and Mum is sitting on
the bed, hands around head, rocking back and fro
singing, “I’m tired and I wanna go home”. :-)

On a different note (probably a B#), this issue of
Frobnicate is bigger than normal to make up for
missing a month. A kind of “double issue”. It covers
such useful topics as “Knowing your SysOp’s for
the Acorn World Show”, “Software copyright”, and
“Buying a 2nd user system”.

There have been some rather interesting requests via
the Reader Survey…

Dump Easy peeC and do some assembler.
Do an article on the Reader’s fave Web sites.
Add a comments section.
Use the genesis browser or summat.
How to get a reply out of Acorn ;-)
Latest from those who break Acorn/ARM
NDA’s (non-disclosure agreement) :-)
Like the Moxon interview, but more
interesting people.

Okay…
Easy peeC wasn’t overly popular. About 35% so I’m
going to try some deeper C stuff. I’d like to do a bit
on assembler, but myself I can just manage to
remember the old “MOV R15,R14”... I don’t have
any real Internet access, so I can’t surf the Web for
you (though people tell me that
http://www.oeh.uni-linz.ac.at:8001/~chris/HATE/hate.html is
worth a visit... There is now a comments page, page
39 in this issue. This magazine was originally

designed to be a magazine. The idea is you print it.
Besides, I didn’t find Genesis to be really suitable
for something like this... As for getting a reply from
Acorn, I’m still waiting for official permission to use
SWI chunk &16F00. I’ve been waiting now a year
and a half. I’ve decided to use it anyway. It is in the
system area, but I’ve not found anything that comes
even close to &16F00. Anybody that gets a quick
reply from Acorn - let us all know! :-) Right. The
NDAs. Well, I don’t know anybody that has been
daft enough to break an NDA - but if somebody is
out there, and you have and interesting story... Let us
know. Also, if you wish to break an NDA and tell us
all about RiscOS3.80 then netmail me!

{ f or the uninitiated, there was a momentary scare on the BBS scene a while back
 when RiscOS 3.80 was uploaded. It turned out to be mangled bits of the RiscOS 3.22
 patches and a textfile claiming:

RiscOS 3.80

The supplied module is release A.

Basic features of RiscOS 3.80:

 - Enhanced 32 bit interface support for Risc PC
 - Maximum hard disc partition size is now two gigabytes
 - Up to 8 devices can be attached to the filer
 - Enhanced serial port
 - Vastly expanded Edit application, based on Zap {not included here}
 - BASIC program compiler {not included here}
 - Pseudo ARM 6/7 interpreter for ARM 3 machines
 - WIMP is cooperative and pre-emptive
 - Fully multitasking printer support {not included here}
 - Enhanced hypertext interactive help in Windows style
 - MPEG routines built in {not included here}

This product requires at least Risc OS 3.10 and 4Mb RAM to patch. Your system must be properly
configured, but only an idiot would have their system configured so badly that this patch will fail.

This product is copyright Acorn Computers Ltd.
If you are not a member of the Acorn Development team or the Memphis project and you are found with

this product, you will be unconditionally prosecuted.

Acorn Ltd. 01 Dec 1994

Ho-hum!

Frobnicate... Issue 4 PAGE 3

Like the Moxon interview...? Erm... Erm... Anybody
consider themselves an interesting interviewee?
Netmail me!

It was interesting to notice that nobody much missed
the news, of which Frobnicate has none. But one
nameless person wants an article on “The plight of
the last goose farm in northern Venezuela”. Any
takers? :-) :-)

I’d like to apologise to Tim Hill (from compu$erve)
who found that little bug with Impression. Okay, for
you and all the others - here is what happened:

Chris Jackson created the issue 3 version with
Impression Publisher. I asked him to save it in a
backwards compatible format because not
everybody has publisher. We agreed to target Style
users. Chris then saved out the multi-file method (the
directory gubbins) as that was what the very first
Impression used. Common sense would say that’s
right... Only Style didn’t want to know. Nor did
Impression II. I then asked Chris to try the single file
bit. That worked with Style, losing only the fancy
stuff (like the bendy borders). Unfortunately I
wandered off to France in the middle of this, and
Chris uploaded the multi-file version. Sorry you
downloaded the wrong one. You could always
upgrade to Impression Publisher..... ;^)

You may, if you downloaded this yourself, have
noticed it is not as large as you’d expect. I’ve taken
steps to reduce the number of images and increase
the number of object based graphics (that means less
sprites, more drawfiles!). Images are nice - sure, but
they also munch through memory like I’ve got an
8Mb A5000. When Encina is back on-line, I may
start a Frobnicate archive area (that’s “ftp site” to
net-nerds) and chuck in all the piccies and articles
that didn’t make it. Did you know the original draft
of the BBS Security article was about 80K? For all
intensive purposes it was trimmed to about 35K -
less than half of it’s original size.

So now to those thinking of running a BBS. I
suppose soon I’ll have to try and make a
comparative review of BBS servers - though it won’t
be easy.

ArcBBS: The ’official’ review version of ArcBBS is
something like version 0.88 - slightly old. And
which is ’officially’ for sale? If a new SysOp
wanted ArcBBS - do they get 1.63 or 1.64?
How do you order it?

Archiboard: Appears to have wandered off into the
realms of Econet/AUN to become a kind of
LAN-BBS. There is a basic form of multi-
media within Archiboard - but that will need
a special terminal to see more than regular
ANSI.

ArmBBS: Is the up-and-coming ANSI BBS system
for Acorn’s. Unfortunately it is still in
development stage and I’ve not seen any
manuals. I’d need a long chat with Keith to do
ArmBBS any justice. Apparently there is a
terminal mode, and I’ve just found out Keith
has implemented a free-form filebase (you
wander around a directory structure as it is on
the disc!). It’s ShareWare, and costs a mere
£25 pounds to register - that’s nearly lunatic
value for money as this is becoming as good as
ArcBBS (at about £99 quid).

NewsFlash: is up-on-coming, suddenly for nowhere.
It supports ArcBBS doors and ArcBBS codes.

VHost: Is a viewdata system by Gareth Babb. It is
quite complex software - indeed I looked into
using it - but being viewdata, it’s a rather small
market. For you new-to-comms people weaned
on ANSI and HTML, Viewdata is kinda like
teletext in appearance.

BBS: Is written in BASIC, simple and probably used
by nobody.

RSDFS/Immediate: Is an Acorn-only system that
offers full multi-media effects (graphics/text/
sound) and operates like a RiscOS filer. It is a
good idea, but is a little bit on the slow side as
14400bps modems take almost as long to send
a sample as to play it! However given some
imagination you might be able to write
interactive WIMP applications for RSDFS/I.

RiscBBS: Anybody with sense will upgrade to the
superior ArmBBS.

And that concludes the Editor’s Pages for this issue.

Byeeeeee!

Frobnicate... Issue 4 PAGE 4

The rise of ASCII (from Baudot/EBCDIC)
Once upon a time, in a galaxy far far away... Well,
in 1880 actually, some guy called J.E.M. Baudot
invented the ’Baudot Code’, which was the main
way of transmitting information via telegraph – right
up into the 1950s. This code is comprised of five
binary digits. Using a shifting system (like the shift
key on a typewriter), the 32 binary combinations
could represent 58 distinct characters – six being
duplicated to be used in either mode.

Unfortunately, a single error when transmitting a
shift could result in the receiver seeing a stream of
garbled stuff: “+5? 1-2 354” instead of “HOW ARE
YOU” or “HUU ABA JOU EEAE” instead of “+44
181 654 2212”.

In the 1950s, with the dawn of the computer (yes,
it’s only been around 50 years - your parents can
remember what it was like before Ninteno), there
came a need to represent the lower-case characters
as well as special characters (like !@#$&*<> etc) –
many more than the 58 provided by the Baudot
code. Almost every computer company designed
their own way to encode the character set but, not
surprisingly, it was IBM’s system that came to be
the de-facto standard. This standard was soon

A 1 0 0 0 0 1

B 0 0 1 1 0 8 C 1 0 1 1 0 9

D 1 1 1 1 0 0

E 0 1 0 0 0 2

F 0 1 1 1 0 NA

G 0 1 0 1 0 7 H 1 1 0 1 0 +

I 0 1 1 0 0 NA

J 1 0 0 1 0 6
K 1 0 0 1 1 (

L 1 1 0 1 1 =M 0 1 0 1 1)

N 0 1 1 1 1 NA

O 1 1 1 0 0 5

P 1 1 1 1 1 %

Q 1 0 1 1 1 /R 0 0 1 1 1 -

S 0 0 1 0 1 . T 1 0 1 0 1 NA
U 1 0 1 0 0 4

V 1 1 1 0 1 �W 0 1 1 0 1 ?

X 0 1 0 0 1 �

Y 0 0 1 0 0 3

Z 1 1 0 0 1 :

LS 0 0 0 0 1 LS
FS 0 0 0 1 0 FS

CR 1 1 0 0 0 CR

LF 1 0 0 0 1 LF

ER 0 0 0 1 1 ER

NA 0 0 0 0 0 NALetters Figures Letters Figures

revised into the Extended Binary Coded Decimal
Interchange Code (EBCDIC). This uses 8 bits to
represent 256 unique characters, and could be the
origins of the ’8 bits to a byte’ concept.

EBCDIC code

00000000 NULL
00000001
00000010
00000011
00000100
00000101 HT
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011 TM
00010100
00010101 LF
00010110 BS
00010111
00011000
00011001 DC1
00011010 DC2
00011011 DC3
00011100 STOP
00011101
00011110
00011111
00100000 DS
00100001 SST
00100010 FDS
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011 VT
00101100 FF
00101101 CR
00101110 SO
00101111 SI
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001 EM
00111010 SUB
00111011 ESC
00111100 FS
00111101 GS
00111110 RS
00111111 US

01000000 SP
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010 £
01001011 .
01001100 <
01001101 (
01001110 +
01001111 1
01010000 &
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010 !
01011011 $
01011100 *
01011101)
01011110 ;
01011111 -
01100000 -
01100001 /
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010 <
01101011 �
01101100 %
01101101 -O-
01101110 >
01101111 ?
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010 :
01111011 #
01111100 @
01111101 �
01111110 =
01111111 �

10000000
10000001 a
10000010 b
10000011 c
10000100 d
10000101 e
10000110 f
10000111 g
10001000 h
10001001 i
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001 j
10010010 k
10010011 l
10010100 m
10010101 n
10010110 o
10010111 p
10011000 q
10011001 r
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010 s
10100011 t
10100100 u
10100101 v
10100110 w
10100111 x
10101000 y
10101001 z
10101010 SOH
10101011 DLE
10101100 CAN
10101101 NAK
10101110 SYN
10101111 ETB
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001 STX
10111010 EXT
10111011
10111100 EOT
10111101 ENQ
10111110 ACK
10111111 BELL

11000000
11000001 A
11000010 B
11000011 C
11000100 D
11000101 E
11000110 F
11000111 G
11001000 H
11001001 I
11001010
11001011
11001100
11001101
11001110
11001111 CAK
11010000
11010001 J
11010010 K
11010011 L
11010100 M
11010101 N
11010110 O
11010111 P
11011000 Q
11011001 R
11011010
11011011
11011100
11011101
11011110
11011111 DAK
11100000
11100001
11100010 S
11100011 T
11100100 U
11100101 V
11100110 W
11100111 X
11101000 Y
11101001 Z
11101010
11101011
11101100
11101101
11101110
11101111 DOS
11110000 1
11110001 2
11110010 3
11110011 4
11110100 5
11110101 6
11110110 7
11110111 8
11111000 9
11111001
11111010
11111011
11111100
11111101
11111110
11111111 <>

Frobnicate... Issue 4 PAGE 5

In the sixties the ANSI (American National
Standards Institute) made an attempt to define a
national standard for characters. They did not choose
EBCDIC, but instead created ASCII (American
Standard Code for Information Interchange). The de-
facto ASCII system uses only seven bits to give a
standard 128 characters – 32 special codes and 96
alphanumerics. The remaining 128 characters are
free for use as graphics characters, parity bits...
whatever. However there is no standard for these
128 characters. Below are those 128 characters as an
Acorn user will recognise:

Now what a PC user would recognise:

IBMs EBCDIC is still used internally on
mainframes, but most microcomputers recognise
ASCII.

In BASIC, you can convert to/from ASCII directly
by using some of BASIC’s functions:

Convert FROM ASCII:
PRINT CHR$(<asciicode>)
so, PRINT CHR$(65) would pop up an
“A” on the screen. An alternative is
VDU 65 – but this isn’t suited for
programming.

Convert TO ASCII:
<variable>=ASC("<character>")
so, char%=ASC("A") would place the
value 65 into the variable char%.

You can also convert upper case characters to lower
case. This is useful for, say, case insensitive string
search routines…

IF char%<64 AND char%>91 THEN
 char%=char% OR 32
ENDIF

��������������������������������
 ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞß
àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ

���������������•‘’‹›“”„–—−Œœ†‡fifl
 ¡¢£¤¥¦§¨©ª«¬-®¯°±²³´µ¶·¸¹º»¼½¾¿
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞß
àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ

NUL Null
SOH Start Of Heading Ctrl+A
STX Start Of Text Ctrl+B
ETX End Of Text Ctrl+C
EOT End Of Transmission Ctrl+D
ENQ Enquiry Ctrl+E
ACK Acknowledge Ctrl+F
BEL Bell Ctrl+G
BS Backspace Ctrl+H
HT Horizontal Tab Ctrl+I
LF Line Feed Ctrl+J
VT Vertical Tab Ctrl+K
FF Form Feed Ctrl+L
CR Carriage Return Ctrl+M
SO Shift Out Ctrl+N
SI Shift In Ctrl+O
DLE Data Link Escape Ctrl+P
DC1 Device Control 1 Ctrl+Q
DC2 Device Control 2 Ctrl+R
DC3 Device Control 3 Ctrl+S
DC4 Device Control 4 Ctrl+T
NAK Negative Acknowledge Ctrl+U
SYN Synchronous Idle Ctrl+V
ETB End of Transmission BlockCtrl+W
CAN Cancel Ctrl+X
EM End of Medium Ctrl+Y
SUB Substitute Ctrl+Z
ESC Escape
FS File Separator
GS Group Separator
RS Record Separator
US Unit Separator
SPC Space
DEL Delete

Those are the official
assignments. In real life they
do different things, like
Ctrl+B on the Acorn will

ASCII codes enable the printer...

00000000 NUL
00000001 SOH
00000010 STX
00000011 ETX
00000100 EOT
00000101 ENQ
00000110 ACK
00000111 BEL
00001000 BS
00001001 HT
00001010 LF
00001011 VT
00001100 FF
00001101 CR
00001110 SO
00001111 SI
00010000 DLE
00010001 DC1
00010010 DC2
00010011 DC3
00010100 DC4
00010101 NAK
00010110 SYN
00010111 ETB
00011000 CAN
00011001 EM
00011010 SUB
00011011 ESC
00011100 FS
00011101 GS
00011110 RS
00011111 US
00100000 SPC
00100001 !
00100010 "
00100011 #
00100100 $
00100101 %
00100110 &
00100111 '
00101000 (
00101001)
00101010 *
00101011 +
00101100 ,
00101101 -
00101110 .
00101111 /
00110000 0
00110001 1
00110010 2
00110011 3
00110100 4
00110101 5
00110110 6
00110111 7
00111000 8
00111001 9
00111010 :
00111011 ;
00111100 <
00111101 =
00111110 >
00111111 ?

01000000 @
01000001 A
01000010 B
01000011 C
01000100 D
01000101 E
01000110 F
01000111 G
01001000 H
01001001 I
01001010 J
01001011 K
01001100 L
01001101 M
01001110 N
01001111 O
01010000 P
01010001 Q
01010010 R
01010011 S
01010100 T
01010101 U
01010110 V
01010111 W
01011000 X
01011001 Y
01011010 Z
01011011 [
01011100 /
01011101]
01011110 ^
01011111 _
01100000 `
01100001 a
01100010 b
01100011 c
01100100 d
01100101 e
01100110 f
01100111 g
01101000 h
01101001 i
01101010 j
01101011 k
01101100 l
01101101 m
01101110 n
01101111 o
01110000 p
01110001 q
01110010 r
01110011 s
01110100 s
01110101 u
01110110 v
01110111 w
01111000 x
01111001 y
01111010 z
01111011 {
01111100 |
01111101 }
01111110 ~
01111111 DEL

Another BBS for you to call…

THE WEREWOLF BBS
Online 7pm to 7am

0181 289 6003

SysOp : Dane Koekoek (that’s pronounced “koo-koo” :-))

Frobnicate... Issue 4 PAGE 6

Hard discs
The hard disc is a mystical thing. Nowadays, for
about 200 pounds, you can buy an IDE harddisc
capable of storing 1Gb of data (that’s about
1099511620000 characters - masses!) and measures
less than a 5.25“ floppy drive and can transfer up to
6Mb per second!!! Only a few years back you’d be
buying a 50Mb harddisc for about 600 pounds, so
large it needs it’s own box and manages less than
1Mb per second. Nowadays you can buy harddiscs
that you pull out and take home, or even PCMIA
“hard-cards” that look like a fat credit card, or
something you’d bung in a SEGA system.

This article is designed to explain the basic working
of a harddisc. We shall not complicate the issue with
information on SCSI, IDE, ST506, MFM, RLL and
the like. Those are all methods of interfacing the
harddisc to the computer. Nope. This is about the
harddisc.

The harddisc is to floppies what floppies are to
cassettes. They offer fast reliable storage that’s there
when you need it. In fact, it can be argued that
harddiscs are the most impressive part of the entire
computer system. Sure, the ARM processor is cool -
but it doesn’t have high-speed moving parts
engineered to within microns. You could compare
the accuracy to a fully laden jumbo jet flying a metre
above the ground at about 500mph – for hours and
hours.

Spindle

Disc platter

Disc platter

Disc platter

Disc platter

Head
positioner

Moving head

Moving heads

Moving heads

Moving heads

Moving head

The picture at the bottom of the left-hand column
shows a very simplified diagram of a harddisc. Each
disc (also known as a platter) typically has two
surfaces for storing data, and therefore has two
read/write heads. The heads move vertically in and
out – all moving together – to find the right data.
The vertical shaft spins at about 3500rpm, although
some drives (such as my Fujitsi) are a fast-spindle
type and spin at something like 7500rpm. That
means the head is passing over the disc at about
80mph on the outer track. Now do you begin to
understand why it is so impressive? :-)

Just like floppies, the data is tracks, which is a
complete concentric circle of the platter, both sides,
and is usually divided into about 32 sectors. You
could expect to find upwards of 250 tracks in an
centimetre of disc space (~600tpi).

As you move into the centre of the disc, the tracks
become smaller. This means the data on the disc is
stored closer together, though this is helped by the
fact that the heads are not travelling over the disc as
fast as they would be on an outer track.

Not all of the disc is used to store data. It is not
uncommon to see one side of a disc devoted to the
drive itself, for ’housekeeping’ and tracking.

The PC world often talks of cylinders. A cylinder is
all the tracks accessible by a particular head at a
particular location. In our diagram, the cylinder
would equal ten tracks.

We will digress for a few seconds to introduce SCSI
and IDE. These clever mechanisms could give you a
disc with 43 tracks and 27 heads or 207 tracks and 1
head (etc etc). This is because the interface no
longer addresses the disc by head/track/sector. That
is taken care of by the drive. However the drive must
’fake’ a certain setup for the computer’s benefit.
This is less important on modern filing systems like
ADFS where things are referred to by zones and SIN
(System Internal Numbers) - but look on a PC and

Frobnicate... Issue 4 PAGE 7

your IDE drive could look most odd. Underneath all
of the fancy stuff is still a regular harddisc.

In order to achieve such accuracy, the read/write
heads float above the disc at a distance roughly equal
to 0.00003 millimetres, held in place by springs and
air pressure. It’s a distance so small that a mere dust
particle could destroy the head. If your drives
receive a hard knock, you could crash the heads –
literally. I saw a crashed platter. The crash happened
roughly in the middle of the platter, looking as if it
was car bodywork and somebody gouged into it with
a massive key. This spun outwards for about three
centimetres and became much lighter. After
examination, it appeared that the head had been
ripped from the head arm, and the light scratching
was the arm. There were large pits and dents all over
the various platters where the head had bounced off.
There was an awful lot of dust in there as well. So it
goes without saying that only a fool would try
something inanely stupid like shaking or tapping a
working harddisc. Okay, how many people put there
hands up? I did. I lost 10Mb of data, from a cheap
old drive. Not a big deal, but when you loose, say,
400Mb on your sparkling new drive – it’s a major
big deal.

This leads me on to my harddisc. My 1Gb. Full of
errors. One partition dead. Why? Was I stupid
enough to whack it with a hammer? I might as well
have been. You see, big modern powerful harddiscs
are designed to be switched on. Only going off when
the power dies. I wasn’t aware of the intricacies of
this, so I switched my computer off every night and
back on in the morning like I’d always done.

The drive is a fast spindle, and runs at about – oh,
60/70oC – and stays that way. Each night it cooled
down. Each morning it warmed up. Those of you
that played with crystals in chemistry will know that
eventually this can crack a crystal. I doubt my drive
is cracked – that would crash the heads – but it
doesn’t mean that the magnetic coating on the
platters hasn’t taken on the appearance of crazy
paving. I later found out that your warranty is about
ten years in a fixed switch-on-and-leave installation,
and about 1 year if you switch the thing on and off.
Need I say any more? I thought I was saving some
electricity by not leaving the machine on over the

night. Instead I’m buying a new harddisc for about
£350 – hardly a years worth of electricity savings.
Need I say more? The internal drives are smaller
and cooler and don’t suffer this problem. But as any
electrician will know – the greatest loading is the
surge current at start-up. That’s when things are
most likely to give up. So, if you can, switch the
whole lot on and leave it that way.

Coming soon...

...from BudgieSoft

On-line access to
TeleText services.

Teletext is copyright. The principle behind this
service is users receive teletext free with their TV
licence. This door asks users to confirm they have a

valid British TV license. Then they may use this
door as an extension of their TV set. Useful for

people that do not own TeleText TVs...

BudgieSoft will not be liable for situations arising
from the use of !TTXdoor program.

 P200 CNNTEXT P200 Sat Sep 30 14:23:21
ÜÛÛÝÜÛ ÝÞÞ ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ
ÝÝ ÞÞÞÝÝ Þ ßÝßÞ Ý Ûßß Ý Ý ÝÞßÝ Ýß
ÝÝ ÞÝÝÝ ÞÞ Ý ÞÜÝ ÝÜÝ ÝÜÝ ÝÞÜÝ ÝÜ
ßÛÜÜßßÛÝÞß ßßßßßßßßßßßßßßßßßßßßßßßßßßßßß
 PROGRAMME SCHEDULES FROM CNNI

 What’s On Today:
 O J Simpson special 201
 0000 - 0800 202
 0830 - 1300 203
 1330 - 1800 204
 1900 - 2330 205
 Tomorrow’s Schedule 206
 Coming Soon to CNNI 207
 Programme Guide Index 208
 Subtitles on CNNI 250
 Turner Broadcasting News 255
 CNN Education 270
 CNN TEXT HELP 290

 WORLD TIME CLOCK 450
 ARE YOUR TREASURY OPERATIONS
 SUCCESSFUL? See 697

Would YOU like to write for Frobnicate?
Simply write your article and send it to Richard Murray.

Good articles should make the next issue...

Frobnicate... Issue 4 PAGE 8

KNOW YOUR SYSOPS!
This is my personal insight (and some info) on the

SysOps you may meet at the Acorn Show...

DaviD Dade (& Dave Coleman)

One of the most important SysOps at the show is the
guru himself. David Coleman and DaviD run the
Arcade BBS – the premiere Acorn BBS with 5 lines
and around 250 callers per day. The BBS is huge,
with some 65,000 files. The software is ArcBBS,
running on a 13Mb RiscPC600 with nearly 2Gb of
storage and an automated tape streamer backup. All
lines support at least V.32bis (14400bps) with most
that I know being able to handle V.FC (28800bps).
The top single-person upload count is 1254 files, the
top single-person download count is 4146.

Steve Pursey
Steve runs the ArcTic
BBS, also in London. He
is “not an 18 year old
college student ’into
computers’ but a 40+
year old HGV truck
driver...who likes
comms”. Steve has a
wife, three kids and four
cats – so he’s a busy
family man. It’s a
wonder Steve is with us

right now as his first computer was a ZX81,
followed by a Vic20. Finally Steve saw sense and
bought a BBC micro (:-) go on PC owners, flame
me!) and has stayed with Acorns and BBSs since.
ArcTic BBS as we know it went on-line on the first
of February 1993. By now ArcTic offers two lines,
the first with 28800bps capabilities, the latter a
14400bps. ArcTic runs on a RiscPC700 with again
nearly 2Gb of storage. I wish Steve and the cats all
the best for ArcTic. It’s a shame it is so close to
Arcade. But only the other hand, if all those Arcade
callers buzz Steve on +44 181 903 1309/1308 then...
:-)

John Stonier

John Stonier is the SysOp of the up-and-coming
Digital Databank BBS, now with 4 lines and and
Acorn RiscPC610 and about 1Gb of storage.
DigiBank (as it’s known in short) offers 14400bps
on the three main lines and 28800bps on the main
line. John’s vision was to “gather as much Acorn
information as possible under one roof, and
broadcast it to as many people as possible.”, thus
explaining the name “Digital Databank”. DigiBank
features a full and useful Acorn section with release
notes and updates and such. So when you next visit
DigiBank, remember it’s aims are:
 1. To provide a central storage database for all Acorn information.
 2. To provide a shopping service for both Acorn businesses and customers.
 3. To promote a healthy interest in the Acorn industry.
 4. To bring Acorn computers to the attention of non-Acorn owners.
 5. To bring like-minded Acorn owners around the UK together for the purpose
 of stimulation and education.
 6. To encourage Acorn owners to purchase comms equipment.
 7. To provide the latest demos and information as soon as possible.

Frobnicate... Issue 4 PAGE 9

Keith Hall
Unfortunately I have been unable to obtain a picture of Keith.

Keith is the creator of the up-and-coming ArmBBS
software – the new RiscBBS, as well as one of the
people that brought you ArcBinkley. I have been
unable to find out much about Keith, but I do know
he is a budgie person like myself. :-)

Chris Jackson

On the BBS scene, Chris is probably best known for
his Natter SysOp chat door – although he has also
written other utilities like ZAnsiDial, CallCost and
QwikCD. Chris writes the Acorn User Club Corner
and has also reviewed software. The Northern ARM
BBS runs on a RiscPC with 1Gb of storage and
CD-ROM access. The BBS is also the RiscNet host
for the UK and Chris has been most helpful to me in
explaining the ins and outs of the ’fido’ system.

Robin Abecasis
Again, no picture. Hmmm... I asked him point blank
about a piccy but he declined. He can’t be that
ugly... I’m pretty d*mned ugly but I released my
pictures... :-) Robin is into bikes and leather jackets
(so certain people living in northern London should
beware). He runs the Renegades BBS up in Scotland
(was previously The Wee BBS but Robin hopped on
the bandwagon and got ArmBBS and a RiscPC
(pah!)). Robin is also known as “Rob the slob” and
has written some software under that name –
!ArcQuoter being one you might have heard of.

Hugo Fiennes
Hugo is the person
behind the ArcBBS
software. A lot of
work has gone into
it. I believe it’s 6
years old. Hugo is a
firm comms person
with ArcTerm(7)
and the SP_Dual
serial port also
under his belt
(ouch!). Hugo runs The World Of Cryton BBS on an
8Mb A540 (finally, no RiscPC!) and about 1Gb of
storage. Hugo also has a “very old displayphone”
and must be the only person I know that owns one of
those things. :-)

Dane Koekoek
(pronounced “cookoo”)

Dane runs his
Werewolf BBS on
ArmBBS. He has also
started WolfNet
(competition for
RiscNet?) and writes
software under the
name Werewolf Soft-
ware. I don’t quite
know Dane’s fasc-
ination with Were-
wolves, but his ANSI
logo is pretty cool...
Dane is, for reasons
beyond his control, unfortunately planning to attend
the Acorn Show on the Friday... Most people are
planning to descend on the place on Saturday.

And that leaves only one person.....

Frobnicate... Issue 4 PAGE 10

Me!!!

See... I told you I wasn’t too hot in the beauty
department. :-) I run a BBS called Encina that offers
all kinds of bizarre features, including multilingual
menus. Due to my not owning a telephone line for
the BBS – I hope soon to work out something like
7pm – 7am for the system. However my BBS has no
filearea due to the harddisc problems. It’s on
magnetic tape...somewhere! I am also known as
“BudgieSoft” (or to some, as “BodgySoft” which I
think is kinda cute in an extremely sad way). I
mainly write BBS doors. Many many of the things.
In fact I think at this moment I am the door writer
with the most doors (wow! So?). My flagship door is
the CastAVote suite. A little project that didn’t start
out as much, but has become quite something. Other
doors of mine are Parlez, Linker, HappyHak,
LastUsers etc etc. I also write behind-the-scenes
utilities for the SysOp: ReadArea, ViewFile,
CloseFile, SetUser0 to name but a few. For door
writers there is DoorDocs, now in release 5. And for
techies there is this creation... Frobnicate.
I don’t know if I’ll be at the Acorn Show yet or not.
Last year I was until two weeks before when I ended
up in Malaga via France! If I do go, I think it will
probably be the Saturday. I went to Live’94 on the
last day to find most people buggered off home
early. So no more last-day-visits for me (though I
could have had an Apple Mac for about 500 quid!).

Isn’t it easy to give an insight into yourself, huh?

Oh yeah. My system... Erm... 4Mb A5000 with 1Gb
of storage and a tape streamer. AKF12 monitor (and
a dead AKF18). Vision digitiser. SCSI card.
sp_dual. Two 14400bps modems. BetaMax, VHS
and a Canon Hi8 video camera. Satellite receiver
and teletext decoder. That’s about it... For now.

For those of you that asked...

Some people have been asking me about Econet hardware. The
actual Econet cards are a tad complex to build, so you are best
off buying 2nd hand ones. They cost £50 new, so don’t pay
more than about £20 for them. You’ll need some good quality
5-core wire for it (shielded telephone cable will work for short
distances). You may need terminators. It depends upon your
setup.

What you will need is a clockbox. Here is the circuit Acorn
details in the Advanced Econet Guide:

153K

115K

 76K

 38K

 19K

 12K

9600

8613

7035

4800

230K

307K

460K

614K 1

17

2

16

3

15

4

5

7

6

8

14

13

9
11 18 19

X1
1.8432
MHz

15M

MC14411

2

3
6

4

5

10 22 23

1

2

3

4 5

75159a

13

12

9
10

11

75159b

0V

1K

+5V

0V

LED

470

0.1µ

LM340T5
12

3

ECONET
CLOCK BOX SCHEMATIC

The Finishing Touch - addition

Following the last “The Finishing Touch”, several people have
pointed out that you can tell which Sprites## to use in
RiscOS2 – for those that still use RiscOS2, here is some code:

spr_len%=&3000
DIM sprite_area% spr_len%
sprite_area%!0=spr_len%
sprite_area%!8=16
SYS “OS_SpriteOp”,256+9,sprite_area%
IF wimp_ver%>=300 THEN
 SYS “Wimp_ReadSysInfo”,2 TO spritesuff%
 spritesuff$=FNzerostr(spritesuff%)
ELSE
 SYS “OS_ReadModeVariable”,-1,4 TO ,,nx%
 SYS “OS_ReadModeVariable”,-1,5 TO ,,ny%
 SYS “OS_ReadModeVariable”,-1,9 TO ,,bpp%
 spritesuff$=STR$(1<<nx%)+STR$(1<<ny%)
 IF bpp%=0 AND spritesuff$=”22” THEN spritesuff$=”23”
ENDIF
IF FNexists(path$+”.Resources.Sprites”+spritesuff$)=1 THEN
 SYS “OS_SpriteOp”,256+10,sprite_area%,path$+”.Resources.S
prites”+spritesuff$
ELSE
 SYS “OS_SpriteOp”,256+10,sprite_area%,path$+”.Resources.S

prites”
ENDIF

Frobnicate... Issue 4 PAGE 11

More about Tornado
Firstly the legal stuff:

Copyright for absolutely everything described, implicated or inferred
to (ideas included), whether intentionally or not, within the data as contained
within the unaltered copy of this archive remains with me Niall Douglas, if so
granted by the laws of the country in which you are reading this; otherwise,
copyright remains with me for the same as aforementioned above up to and
including that which is deemed maximum by the laws of the country in which
you are reading this.

Any recipient of this information is also bound by these copyright
restrictions from the moment of possessing a copy of the information whether
he/she has read these restrictions or not, unless this statement and the statement
previous to that cannot be upheld by the laws of the country in which the copy
of this information is being held, in which case the aforementioned statements
as written above in this paragraph are stated to be in force up to and including
that which is deemed maximum by the laws of the country in which the copy
of this information is residing.

I take this opportunity to declare no responsibility for any
inaccuracies, misleading statements (whether intentional or otherwise) or any
other liable information or statements, unless this resolution cannot be upheld
by the laws of the country in which this archive is being held, in which case the
aforementioned statements as written above in this paragraph are stated to be in
force up to and including that which is deemed maximum by the laws of the
country in which this information is residing.

By reading these restrictions, or having the ability to read them
(whether it be direct or indirect), you are agreeing to be bound by them. Again,
this is unless this statement cannot be upheld by the laws of the country in

which the copy of this information is being held.

© Niall Douglas 1995

INTRODUCTION TO TORNADO:

As anyone who knows me will testify, I don’t
particularly like RO3.1 or anything of that thereafter. There’s a
simple reason to this: I think RO2 was the last great update to
RISC-OS, and since then there’s been nothing added to the OS.

That’s why I came up with Tornado. About 80% IMHO
of programs written for RISC-OS are written for the desktop
environment, and yet the method of using the desktop and
writing for it are arcane and haven’t changed greatly since
RISC-OS 2.

The entire philosophy of writing for Tornado is
different. You no longer write applications as programs in their
own right. You write code which defines your program as what
you want it to be. You don’t write code to redraw windows,
you don’t write code to open menus, you don’t write code to
load or save files. You don’t write code to manage memory.
You don’t write code to recognise the difference a double click
from a triple click. You don’t even write code to load in your
user-defined configuration.

The whole thing about Tornado that will scare most
programmers is how little you do do. And the great advantage
of that is that the Tornado operating system suddenly has a lot
of power over every app using it - and the great advantage of
this is it allows applications to function as a single unit in a
fashion never before seen on ANY platform.

And despite all this automation, Tornado increases the
power available to a task by incredible amounts. Suddenly,
things like printing no longer take over the desktop. Tornado
applications can just as easily print five files, while
recalculating a spreadsheet and converting a set of files from
GIF to JPEG on a 1Mb machine (it uses virtual memory) as
allow you to move the mouse around the screen. And this
BTW, doesn’t require any applications loaded in other than a
single spreadsheet.

Tornado offers processing occurring on a task at
multiple levels, via a mixture of multithreading
multiprocessing and its TAOS-like subtask facilities. Files
loaded into one application can appear in another application’s
window without consuming any extra memory, and any
operations performed on one ‘view’ affect all other ‘views’, as
actually they are all multiple views of the same file [1]. Files
can be OLEd and RAM transferred to and from any app,
including non-Tornado one’s (although OLEing between
Tornado apps is _much_ more pleasant and convenient).

The foremost objective of Tornado is to increase
productivity. Above all else, it will do this to its fullest extent.
The second objective is to be frugal with resources ie; be quick
& responsive, not consume vast amounts of memory to do
simple operations (like certain PC GUIs), and not to take up
vast stretches of disc space. The tertiary objective is to remove
as much programming time from the programmer as possible,
and to make life on him/her as easy as possible.

[1] It would seem some people don’t quite understand this. A view of
a file is updated in all views if any of the views are altered (this might
seem like it’s slow, but remember that while all the displays are
updated, you can work on as tornado multitasks during window
redraws, unlike RISC-OS). Note also that a view can be marked as a
separate file - and should the view marked so be altered, it is made
into its own copy, delinked from the other views and then altered. This
way, memory isn’t wasted on multiple copies of the same file.

I’ll also mention here that loading a file into one app, and then
the same file into another will make tornado actually consider both
files to be the same (and thus one a view of the other) - using only one
copy of the file - but should either be changed, they are then delinked
and two copies appear in memory.

Frobnicate detailled Tornado, in Niall’s own words, in
issue 2. However the Tornado project has moved on
from a pre-emptor to a whole operating system.
We would, however, like to point out that programming
something of this complexity is a long job. Frobnicate will try to
keep you in the picture without the usual hype. Also, on behalf
of both Frobnicate and Niall - please don’t email Niall unless
you genuinly have something to contribute. Information on
Tornado will appear here and on DigiBank - as well as other ftp
sites. Let Niall get on with this, and we’ll all see results sooner.

Frobnicate... Issue 4 PAGE 12

Part 1
What is Tornado?

Many of you reading this will already know of the movement
in the Acorn world – a sort of revolution if you will – involving
tornado. And while much misinformation abounds, there are a
few things which are fact:

• Tornado has been designed and is being written by
Acorn users for no direct monetary reward whatsoever. It is
being produced by writers entirely independent from Acorn,
because they are tired of Acorn’s reselling of the same product
and unwillingness to make changes.

• Tornado does not come on a set of ROMs like RISC-
OS. It actually comes in a set of resources contained in a
directory. When this directory is seen by the filer, tornado is
loaded into memory and the tornado environment set up. From
hence tornado applications can be executed under the tornado
multitasker, a piece of engineering far more sophisticated than
the RISC-OS Wimp Manager. This multitasks code
preemptively, and allows a level of multitasking far beyond
that seen before on Acorn machines.

Tornado is split into (currently) four parts. There is the kernel,
which provides various extensions to the RISC-OS kernel not
currently available eg; better memory management, and mouse
control - this part of tornado can be used by any code in the
system. Next is the tornado shell. This runs under the RISC-OS
Window manager as a wimp task, and under that then manages
the various tasks running on tornado. Next there is the tornado
hacks module, which isn’t really part of tornado but as it needs
both the tornado kernel and shell it is packaged with them. It
hacks into the existing window manager, and provides things
like multitasking disc I/O (including loads and saves). Finally
there is the tornado filing system, which among other things
interfaces between tornado and the RISC-OS filing systems –
the main difference being that under tornado you can have
unlimited length filenames. TFS does this by creating a single
file in the root of a filing system, and then manipulates the
storage of files in that single file, like an archive. This bypasses
the existing restrictions of filecore. Also, TFS provides a RMA
based filing system, tfs: which is used by TShell to cache and
optimise various operations. THacks also requires this module
to operate correctly.

Tornado is very future proofed. It uses 32 bits to describe
colours used, and uses 32 bit filetypes too internally. It is not
reliant on any particular architecture, and can utilise up to 4Gb
of RAM. It also can load files up to 4Gb into tornado
applications using only as little as 512k. Almost every part of
tornado can be intercepted, or hacked into, or redirected. This
allows infinite possibilities of future expansion into the next
century.

Finally, tornado’s first and primary aim is increase
productivity. This means, conversely, that anything hindering
productivity will be axed, and ‘gadgets’ designed to impress

the ignorant masses will not be tolerated.
Tornado is a powerful, functional operating system – it will not
mollycoddle newbies, it will not pull punches. It will not use
simple language to users. Users will be expected to know what
they’re doing, and if they don’t then they should find out.

This does not mean there will not be an extensive help system
available. Complex hypertext documents and interactive help
can be bundled with applications, in order to lessen the
learning curve (which when high impedes productivity!), but
they can be deinstalled (thus saving disc space and processor
load) when no longer required.

Well, that’s a summary of tornado. The rest of this information
goes on to explain tornado in greater detail, and there are docs
available which will even break down the internal data formats
and protocols used. They are not generally available, as few
can really understand them, but every document will be
available from hensa and the Digibank BBS - ie; don’t email
me and ask ‘cos they’re available from both those sites!

Part 2
Memory management

Tornado manages its memory, and the memory of the apps
under its control much differently from convention. The
application image is stored in its task slot, allocated from the
tornado memory pool, along with any internal data.
Thankfully, unlike RISC-OS’s 16Mb wimpslot limit, tornado
applications enjoy a 4Gb maximum slot size. This part of the
memory management is handled by the tornado shell.

All files loaded into tornado apps are stored in a heap
located in the tornado multitasker’s memory space (on
MEMC1-1a machines the memory space is a standard
wimpslot [1]; on later hardware it moves into a dynamic area).
This heap’s blocks are relocatable, and the heap is garbaged
regularly. Any free space is returned immediately to the
wimp’s free pool. This part is handled by the tornado kernel.

[1] Note that on current implementations of tornado, the public
area space (tornado system heap) resides in RMA, due to it
being a lot easier to debug things when your heap doesn’t keep
getting corrupted. It is envisaged that in the future, files loaded
into tornado will be kept in the main memory pool, and virtual
memory applied there. However, as far as the application will
be concerned the files will still be stored in the tornado system
heap.

The reason why files are kept in tornado’s memory space is
because:

(a): On every architecture, this method allows a slot up
to machine RAM size. Obviously, this allows files of almost
infinite length to be loaded when possible.

(b): Virtual memory techniques can be applied to data,
whereby blocks (being relocatable) can be dumped to disc and

Frobnicate... Issue 4 PAGE 13

copied back in when needed (i)
(c): The files are at the full reach of Tornado (it owning

the memory), and so can be accessed without the owning task’s
permission. Obviously tornado apps must keep a copy of the
file in a saveable format at all times - if this is not possible, the
task must provide a routine to generate a saveable file.

[1]. Of course, no task actually owns any files loaded into
tornado apps - except Tornado itself.
Advantages of this system of centralising files:

• Saves and insertion are/can be automated
• OLE and hotlinking can also be automated
• Converters can be used to translate between formats.

 For example,
if the user drags a GIF file to a Tornado app that
can only accept Sprites, it gets converted first
and dumped into tfs: to be loaded in. Being saved
back, it get converted back. This is done by a
specialised range of subtasks
(see the appropriate docs)

• Upon your app crashing, files currently being edited
can automatically be saved out. This of course can only
be done if your app maintains a ready-to-save copy of
the file at all times (which is recommended). (See
appropriate docs)
• You can use the Tornado renderers. These centralised
renderers take a file, in its saved format, and render it.
They can render 2d vectors, text, DTP pages, sound, 3d
vectors, bitmaps, soundtrackers, movies – whatever.
Once a renderer is written and installed, it’s available
for all apps that can take it (see appropriate docs)
• You can use the Tornado multiprocessors. Although
these are far more generalised than just for this one,
these can convert between file formats (as mentioned
above), but can also do complex tasks eg; rotate a JPEG.
This may be done not only on a local processor, but
perhaps on a second processor or a processor on a
machine on the other end of a network
(see appropriate docs)

(i): Virtual memory works by breaking up very long block into
much smaller ones (usually a multiple of the track size of the
disc media upon which the cache is being kept for speed). Each
of these blocks has a time associated with it (OS_Monotonic)
ie; when it was last accessed using Tornado_Getaddr. When
necessary, blocks past a certain age (or type - for example,
blocks all belonging to a 25Mb block will be swapped in and
out depending on which part of the total block is being
accessed - thus not flushing all data onto disc) get dumped to
disc and it is stored where they are (disc pathname). This
allows a 2560x2048 32 bit sprite (taking normally 20Mb) to be
edited on a 1Mb machine, as given that there would be an
average 75 byte header, and with 2048 blocks of 10240 bytes
each (=2 tracks on floppy E format) = about 170k of memory +
10240 to store each block.

The common tornado heap help in RMA is a special tornado
heap, and is referenced by passing 0 as the heap start to the
Tornado heap SWIs. It features relocatable blocks with
auto-garbaging, and fixed blocks are supported too. Heaps are

also relocatable, so you can have a heap in a heap. Also, heaps
can be auto-extending, ie; they will increase/decrease the
allocation of whatever they are stored in. In the case of postslot
heaps, they will automatically call Tornado_ExtendSlot to alter
the size of the heap. This makes setting up postslot heaps
extremely easy.

Blocks in these special heaps are referenced to by their
handle, a negative number. This handle is passed to all heap
operations, and the program need not worry where the data is
really stored. When it needs to access the data, it calls
Tornado_Getaddr, which returns the current address of that
block. Fixed blocks are referenced a la OS_Heap style, with the
handle being a fixed address in memory.

Another heap used by Tornado is the subtask heap,
referenced by 1 – but this is for the exclusive use of subtasks –
see the appropriate documentation.

Part 3
The Tornado shell

Well, this time I can actually write something about the
tornado shell - some it has been written, and much more
finalised.

When you start up your RISC-OS computer, and display a
directory containing !Tornado (tornado’s resource directory), it
loads itself in and installs its resources. TShell sets itself up as
a Wimp task, and claims a section of application space on
MEMC1/1a machines, or a dynamic area on later architectures.
It then starts up the multitasker in the memory space, and starts
up a small task which handles tornado’s user interactions.

From hence, all files double clicked on in the filer are
intercepted, and checked to see if they are wimp apps. If so,
they are returned to the wimp, and if not a new memory
domain is created, the image loaded in, and execution started.

The code is now preempted, and a handler is installed
on WrchV which upon vdu output creates a 640x512x2 sprite,
and redirects vdu output and the OS_ReadVduVariables into it
(thus allowing most games to work). The task can run nicely in
its window, or if the user chooses they can move the task to full
screen use. Note that during full screen use, either full, partial
or no multitasking is retained [1].

On the other hand, if the image calls Tornado_Initialise
before outputting to the vdu, the handler is removed and
tornado searches the home path for the options, templates,
messages and menu files. These are all loaded in by tornado,
and installed in memory.

Writing for tornado

Code written for tornado is done using a visual editor, similar
to that used on other platforms. You create an application, and
then design the windows to be used in it. To the various parts
of each window you attach code segments, written using Zap

Frobnicate... Issue 4 PAGE 14

via the external edit protocol. Probably the best way to explain
this is to write a program, here and now. Ok then: how about a
program which will update a window in real-time according to
the amount of space available on a disc drive?

Firstly, you create a new application (which appears as a icon
in the loaded apps window), and then you create a window in it
by dragging the ‘create window’ tool onto the window icon.
The new window pops up. Inside the window you create a text
icon with “Free:” in it by dragging one of the predefined text
icons into it, and beside it a green raised icon - also from the
predefined icon library. Now, you use the BASIC link tool to
attach a section of BASIC to that icon, and make the code
callable on every refresh. Up pops an empty function in a Zap
window:

DEF FNicon1
 LOCAL

=

Now, you change this to:

DEF FNicon1(disc$)
 LOCAL free%
 REM By right I should check for other FS’s
 SYS “ADFS_FreeSpace”,disc$ TO free%
=free%/4096

... and change the code entry to
‘wi=FNicon1(MID$(”%ti”,1,INSTR(”%ti”,”:”)))’. This, by the
way, set the width of the icon this code is attached to to the
returned result of FNicon1. FNicon1 is passed the result of
‘MID$(”%ti”,1,INSTR(”%ti”,”:”))’, where %ti is replaced with
the text in the title bar (which BTW would have code attached
to it setting it to the media this window is referring to). From
hence, every time the window is opened this code is called, and
the bar set to the correct value. But this isn’t real time, is it?

The trick is to set up a ticker. This is done by specifying a
ticker countdown in cs, and every x cs the code is called.
Here’s the code:

DEF FNticker1(handle%)
 IF !updated% THEN SYS “Tornado_OpenWindow”,ha
ndle%
=0

This checks !updated, and if it’s true reopens the window.
BTW, the link code for this would be: ‘FNticker1(%th)’, where
the handle of the window owning the icon is substituted in for
%th.

But how would !updated% be altered. By setting up a handler,
in this case a window create handler. This code gets called on
every window created:

DEF FNhandler1(wkspace%,disc$)
 LOCAL P%,N%,blk%,addr%
 SYS “Tornado_Getblk”,%1,0,1024 TO ,,,blk%

 SYS “Tornado_Extblk”,,0,+4,wkspace%
 SYS “Tornado_Getaddr”,,0,,wkspace% TO ,,addr%
 !addr%=blk%
 FOR N%=0 TO 2 STEP 2
 P%=blk%
 [OPT N%
 .disc EQUS disc$:EQUB0:ALIGN
 .upcallv
 \Checks for alterations to the path at .dis
c, and sets .updated% if true
 ...
 .updated% EQUD 0
]
 NEXT
=1:REM This specifies we want to keep the wkspa
ce passed to us

Of course, this will only allow one window to work at a time.
To get around that, you would put updated% in the wkspace.
The wkspace ptr can be passed via a substitution to any code
linked to icons, handlers or tickers called from that window.

Of course, future versions of tornado will allow the ticker used
above to be done automatically by tornado - tornado will check
updated% for the task. But for the time being, this is as far as
tornado goes.

Languages

Although I used BASIC to demonstrate tornado’s visual style
of writing, both C and assembler can be used as well. In fact,
there is no reason why a mixture of C, BASIC & assembler
can’t be used in the one program, and leaving the tornado
editor with the problem of linking the lot together. Also
supplied with the editor are libraries of code segments, which
allow further standardisation and ease of program construction.

However, despite the loss of multithreading with
BASIC, BASIC does contain one huge advantage over C and
assembler - it’s interpreted. This allows tornado to directly call
functions in the image using EVAL. With C and assembler,
large tables of function names and their offsets must be
created – a real burden for a programmer. Of course, the editor
will automate all that – but for now, it’s a lot easier and simpler
for us to write the lot for BASIC - and extend for C and
assembler later.

Anyway, BASIC needs a bit of a boost. Acorn have
definitely been ignoring it in the last few years.

Part 4
Crash protection

From the moment a program starts up under tornado, it comes
under the protective wing of Tornado. From now on, there are
very few ways programs can lock up the machine [1].

Frobnicate... Issue 4 PAGE 15

Tornado monitors all filing system operations done by the
app/program, and closes any files that are still open when an
app/program terminates (unless vetoed by a service call or
wimp service message broadcast). Also, it installs handlers to
deal with Undefined instructions, Prefetch aborts, Data aborts,
Address exceptions, Branch through zeros, CAO exiting errors,
normal errors and when OS_Exit is called.

For Undefined instructions, Prefetch aborts, Data aborts,
Address exceptions, Branch through zeros and CAO exiting
errors, preemption is halted on that task, control removed and a
window is displayed telling the user that this fatal error has
occurred, and asking what should be done about it. The user
then has the option to save out any files currently loaded into
that app, or to save them into a temporary space and restart the
app, which will then reload in those files, or to ignore the error
and continue (in which case you’ll get the usual error box, and
lose your files). For normal errors, usually the task has its own
error handler installed to deal with these errors, but it may
request that this operation be automated.

For OS_Exit being called before Tornado_Closedown,
tornado cleans up, again by asking the user about any unsaved
files etc. etc.

There is also another level of protection: If the task goes into a
never-ending loop, and if the messages waiting for it exceed a
certain value, a message pops up to the user indicating that it is
most likely that the task has crashed, and does the user wish to
terminate the task.

This leaves only a few ways left of locking up the machine, ie;
the ones which would usually cause a full reset to get out of
them. Due to the structure of the RISC-OS kernel, it’s very
difficult to get around these, but I’m sure you’ll agree that the
proposals above with certainly help no end.

Part 5
Subtasks

Subtasks are an extremely powerful way of doing processing.
They are TAOS-like in the way they can process in multiple
threads. The benefits of TAOS are well known, and most of
those benefits are available to tornado apps.

A tornado subtask is a normal tornado task, except that
it is subject to a number of restrictions – they are only allowed
to access memory within their own space and within the
subtask heap, and can only communicate normally with their
parent and their sibling subtasks. Generally speaking, they fill a
buffer of processed data and pass this to their parent ie; they do
their processing in sections.

The main advantage of using subtasks is that it allows a
bit more of multithreading than usual with BASIC. Due to
BASIC’s structure, execution cannot occur at different parts of
the program at the same time, so by using subtasks a BASIC
programmer can still have limited multithreading.

Another advantage is that with the arrival of

multiprocessor Acorn’s, the subtask can be executed on a
separate processor - and thus giving all the obvious advantages.

An example of this is a http fetcher. The parent html
viewer, is asked to fetch http://www.acorn.co.uk for example.
The parent, a tornado task, starts up one of its private subtasks
stored within its directory (some subtasks are stored for public
use ie; any tornado task can use them) which fetches http:
links.

The subtask starts, and uses ttcpip: to send a http
request. When receiving confirmation, it passes the message to
its parent which displays the appropriate message. Then the
html page arrives in packets, as is in tcpip’s nature, and this is
run through, picking out all the references to
graphics/sound/movie. The graphics/movie are then sent for,
by the subtask starting up siblings, which in fact are copies of
itself. Each of these siblings reads in the graphic/first fram of
the movie, checks what format it is, and then starts up the
appropriate graphic converter from the public converter library,
passing it the reference by which it can send its processed data
to the parent app.

Ok, so now the picture looks like this:

 Parent html (www) viewer
 | Passes down http://www.acorn.co.uk
 |
 | Passes up html document
 http fetcher
 Passes down http://www. / | \ Passes down http://www.acorn.
 acorn.co.uk/ --------------- | ---------------- co.uk/sprite.gif
 drawfile.gif / Passes down http://www.acorn. \
 | co.uk/movie.rply |
 | | |
 | | |
 http fetcher http fetcher http fetcher
 This being a private Passes | down all Passes | down all the
 subtask knows its parent the data | received data | received
 can plot drawfile, so it | |
 sends its received data | |
 straight back to its Passes up | when to stop GIF=>Sprite
 parent. If it were a sending | data converter
 public subtask it would Replay=>Sprite This takes the GIF
 check what filetypes the converter and converts it into
 parent can load, and This takes enough a sprite, and sends the
 convert to sprite if it data to convert the data, as processed, back
 couldn’t handle drawfiles first frame into a to the parent
 sprite and also sends / | \
 all the data processed Delegated tasks
 straight back to the The same as below, except
 parent obviously it’s multiple
 / | \ copies of the GIF=>Sprite
 Delegated tasks converter
 These are separate copies
 of the Replay=>Sprite
 converter called when the
 converter above this is still
 processing but is asked to
 process another segment of
 data retrieved from ttcpip:

As you can see, processing of all data coming in performed
simultaneously, which means that no matter how quickly the
data comes in, it is all
processed, not held up until the processing and conversion
routines can deal
with it. The speed and productivity gains are impossible to
calculate. It

Frobnicate... Issue 4 PAGE 16

also means that the parent html viewer may have bits of GIF
appearing in a seemingly random order, which I would suggest
is not altogether bad.

Subtasks are also subject to constant monitoring - should one
fail due to lack of memory, it’s parent is notified and can do
what it likes with the information eg; schedule a retry, or
perhaps inform its parent (if a subtask). It may also display a
message/put a question to the user via Tornado_Query.

Should a subtask crash, it gets the same treatment as
other tornado tasks – except that again its caller is notified after
everything has been cleaned up. Subtasks can also request that
a postslot heap be set up, so they can store internal memory
allocations.

Another feature of subtasks is that all vdu output is sent
to its parent. This can be used to run normally single-tasking
tasks eg; my hopefully forthcoming animals guessing game
door for Newsflash will be the raw program in BASIC as
written in 1993, but with a parent ‘supervisor’ which starts up
the program as a subtask, reads in all graphics input, converts
any vdu colour sequences/cursor positioning into suitable
ANSI commands, and spits that down the line to Newsflash.

Special subtasks

Special subtasks currently come in as file converters. If a user
drags a GIF file onto a tornado app which can only accept
Sprites, then the converter subtask (stored in tconvert:) list
entry called by the 32bit hexadecimal of the GIF filetype is
checked out to find out what that filetype can be converted to.
If it can be converted to a format that is loadable by the app the
file is going to, the GIF file is loaded into tfs: while
multitasking, and the subtask, as specified by the subtask list, is
started up. The parent, Tornado, sets up an area of memory to
receive the file, and the subtask starts spitting out converted
Sprite.

When the subtask finishes, the original GIF data is
thrown away and the file is loaded into the app by Tornado (see
the appropriate document about loading and saving). Voila!

On saving, in the save box a GIF filesprite is shown,
and unless the user changes it, the file is saved to tfs:,
converted back by the appropriate subtask (this time
determined from the entry for the hexadecimal of the sprite
filetype).

Other things about subtasks

Another thing to be noted here is that Tornado is intelligent
about subtasks. It caches the most recently loaded subtasks so
that they may be accessed quicker, if the user so wants, in tfs:
(if present).

As said above, subtasks may not be necessarily
executed on the local processor. They may also be executed on
a second processor, or on a processor running somewhere on a
network. Many people laughed at my original claim that the
processor may be running on the other side of the world,
connected via Internet. This is not unrealistic. Because subtasks
communicate by Tornado_SendSTMessages and
Tornado_GetSTMessages, and think they are the only process

running in the machine, they can be run by a suitable
multitasker/server. A client running on the local machine can
send the subtask code down the network to the server, wherein
it is cached and can be kept for future use. All messages
between parent and subtask can be run over the network. Easy!

Summary of subtasks: they are extremely powerful, and their
importance in the Acorn world can only increase, if not within
Tornado but by the probable implementation of TAOS for the
ARM series of processors.

Part 6
File renderers

Generally speaking, all files can be displayed by Tornado apps,
whether they be text, styled laid-out text, bitmap, vector, 3d
vector, sound sample, soundtracker, movie etc. This is done by
the following method.
A file is loaded into a Tornado app which can load such
filetypes by Tornado, and is asked to redraw the file. The app
calls Tornado_Renderfile, with the filetype. Here’s what
happens at this stage:

• Tornado broadcasts a service call, and if a module
picks it up, it renders the file.
• If the service call isn’t acknowledged, Tornado returns
‘Please reschedule’ to the calling app, gives the user a
message saying ‘Please wait’, and looks in
TRenderers:List, at the entry which is the 32 bit
hexadecimal of the filetype being rendered. The module
detailed in there is loaded in under multitasking.
• The module is initialised, and loads in any libraries it
needs under multitasking. Tornado first checks to see if
these modules are present - if so, all well and good, but
if not they are loaded in under multitasking. Tornado
makes a note of the modules it loads in.
• Meanwhile, the initiating task has been calling
Tornado_Renderfilerepeatedly and being told to wait.
Now the renderer is present, the service call is
rebroadcast, whereupon the module should render the
file.
• Now, depending on what the user has configured, the
renderer is told to quit and all modules loaded in by it
are also quit, and removed from memory.

Obviously, if the user wishes, the module may remain in
memory (the user specifies max renderers to be in memory at
once, or max number of bytes they and their libraries should
take up etc).

The reason for the libraries is that most files are currently
rendered by module-based code eg; soundtrackers, artwork
files etc. All it would take is a simple suitable module front-end
which interfaces between Tornado and the appropriate library.

As you can see, this is another extremely powerful aspect of

Frobnicate... Issue 4 PAGE 17

Tornado. It means things like DTP and hypertext apps can have
all types of file integrated into them, only limited by the
renderers available. This includes movies, sound,
graphics – whatever.

Part 7
I/O, OLE and hotlinking

Tornado does all disc I/O while multitasking, including when
an executable is being loaded in from a !Run file. Tornado does
this by providing *-commands to load in code while
multitasking. A background operation hourglass appears during
this. Also, any I/O operations are done by Tornado, including
serial, parallel, disc and inter-application I/O. Sometimes the
I/O is done without the application’s knowledge or
involvement. For a start, all low-level serial and parallel I/O is
done using SWI Tornado_IOOp. Block gbpb taking more than
1cs to perform gets broken into blocks and transferred while
multitasking, although the calling task can have the SWI return
control instead so full application functionality is retained
(BASIC programmers would need this the most - C and
assembler images can be multithreaded in this case). I/O is
done using the serial block drivers for the serial port, and with
a specialised replaceable driver for the parallel port.

For more generalised use, I/O can be directed at tserial:,
tparallel:, tprinter: and anything else that is added by third-
party producers (eg; tethernet:). For the printer, tprinter: in fact
is a FIFO buffer which takes in input and spits out output to the
printer as fast as it can. I/O to tprinter: is also done while
multitasking, unless the app wishes to retain full functionality.
I/O to tserial: actually directs I/O to whatever is the currently
selected serial driver(s) (can be different for different apps).
Also, multiple apps can access the serial port at once, using a
system like the input focus. The access requirements for eg;
tethernet: have yet to be finalised.

That’s general I/O. For more usual I/O like disc I/O, there’s a
different setup. For a start, applications do not know that a user
has requested that a file be loaded into that application. Nor
does an application know if the user saves the file out of it. Or
if the user has OLEd a file currently loaded in. Or, for that
matter, if the application has any files loaded in at all. [1]

How is this possible? Well, tornado applications are
written to edit one file and one file only. Tornado handles the
loading in of multiple files. Also, tornado applications do not
load in files, they rather replace an existing (possibly empty)
one. For example, loading in a tornado app and then loading a
file into that actually replaces the blank file which is
considered to be already loaded in with the one being loaded
in. [2]

This means that the user OLEing a drawfile in a DTP
frame simply does the following:

• User does OLE special-key & click.
• Tornado receives this, and checks the filetype of the
file loaded into the frame in the DTP (i)

• Tornado checks the apps currently loaded in, and sees
if any of them can load the file (ii), and if none are
loaded in it checks to see if any suitable apps have been
seen by the filer (iii)
• Tornado tells the receiving app to *replace* the
currently loaded blank file with this file here, and passes
it the address of the file loaded into the DTP package. It
also tells the new-found editor where to open its editor
window if appropriate eg; directly over the frame
containing the original, scaled to the correct zoom
factors etc. (iv)
• From now on, any modifications made to the shared
file is accompanied with a message sent to all tasks with
access to that file requesting that they redraw that file
(v)

(i) Tornado knows the filetype of every file loaded in because
it does the loading in.
(ii) Tornado knows which filetypes each app loaded in can edit
(without conversion) because the app declares them in its
Tornado script file.
(iii) Tornado knows which filetypes each app on disc can edit
because they are declared in the !Boot file of every app on disc.
Tornado can build a ‘map’ of the disc by checking the disc for
tornado apps, extracting what files they can load and compiling
them into a list. When the Tornado filer is written, any changes
made to the directory structure (ie; the user moves a file from
here to there) will also update the list. Otherwise, or to save
memory, Tornado can simply register any apps seen by the
filer.
(iv) All files loaded into all tornado apps are stored in a central
reservoir maintained by Tornado, and this lives in RMA. See
the appropriate file about this.
(v) All files are redrawn by the Tornado renderers, which are
available to all tornado apps. See the appropriate file about this.

From the above, you can see how the user dragging a file from
the filer to a tornado app would work, and dragging a file from
another app to an app, and hotlinking a whole bunch of files
together. It’s even possible that a single file could be shared
over a network eg; an alteration to a file on one station would
affect all copies all over the network (and beyond). This would
allow teachers to monitor what any student is doing.

Note also, that all files loaded in and saved out go through tfs:
(if present). The file is loaded while multitasking into tfs:, and
loaded into the app from there. A file is saved to tfs:, from
where it is copied to disc under multitasking. This ensures
constant multitasking.

See also the section about subtasks, as subtasks play a more
than notable part in implementing I/O.

[1] Note that in fact, no tornado application can have a file
loaded into it. The file in fact is loaded into tornado, and
tornado passes the editing of the file to the app the user
assigned to it by dragging the file onto the icon of that app. Ie;
the app doesn’t maintain its own list of files. Nor can it
distinguish between files passed to it by tornado. When a user
alters a file, tornado informs the app owning the editor window

Frobnicate... Issue 4 PAGE 18

and passes it the address of the file. The editor modifies the
file, and tornado shows any changes onscreen.

[2] In other words, multiple files ‘loaded’ into an app are really
a list of files associated with that app. When one is altered, the
app is called to do it. As far as the app is concerned, it can edit
one file and one file only – whatever the file tornado passes to
it.

Part 8
What tornado will not do

for your machine
While tornado is brilliant and all that, there are just some things
it won’t and cannot do. These are some of them:

Tornado will not speed up your machine. Anything but. In fact,
a RO2 Arm2 machine with tornado running is just about
usuable in a hires mode (but remember a RO3 Arm2 in SVGA
is so slow it’s almost useless). Tornado’s advanced features do
not come without a price, and both memory and speed suffer
under tornado. While tornado works fine on a RO2 Arm2
Mode 12 machine, it’s pretty much useless when you’re using
mode 21.

Also, if you’re planning to do any demanding computer
use with tornado, don’t bother with less than 4Mb of RAM and
a HD with 100Mb free. It’ll work quite nicely on 1Mb, but
don’t expect to have more than two or three applications active.
Also, your hard disc will sorta go spastic if you’re not careful
as 1Mb fills up very quickly indeed, and then the VM kicks in.
2Mb should be fine for typical use, but I’ll put it this way - I
wouldn’t want to write tornado apps on a 2Mb machine.

Simplistically, tornado will not make a RO3 machine go
as fast as a RO2 one. Simply can’t be done I’m afraid. RO2
had some parts hardwired - which is why it goes so fast.

Tornado will not make BASIC multithread. Quite simply, the
structure of the existing BBC BASIC won’t allow different
parts of the executable to be running at once - or at least not
without a lot of memory waste. With care, C and assembler can
multithread quite nicely, but you do have to be careful when
writing them.

However, subtasks can still be written and called from
in BASIC. These allow a cumbersome but effective method of
multithreading processes.

Tornado does not provide full virtual memory. It only provides
virtual memory on memory blocks held in its system heap -
and this allows files of almost unlimited length to be loaded in
and edited. It will not allow private areas of memory to have
virtual memory performed on them, nor will it allow code to
run in virtual space. The structure of the RISC-OS kernel
prevents virtual memory working correctly when applied to

code images.
Also, may I add that even if it were possible, I wouldn’t

allow it. I have many objections to full VM, and personally
only see it as a good method of editing files larger than
memory. No more.

No doubt, this list will grow. Keep watching this space ...

Finally,

Part 9
Miscellaneous

Well, this is simply here, as the name denotes, to stick in all the
things not covered by the other parts of this archive. Or, in
other words, to boast about Tornado!

Tornado is heavily future-proofed. It has provision for
infinite length filenames, infinite files per directory, and
interestingly 32 bit filetypes. Internally it uses all of these, and
‘translates’ to and from what is currently used when required.
It can handle multiple processor architectures as and when they
appear. It’s extremely flexible. Tornado will bend to even the
most demanding applications, and can be customised to a level
pretty much unheard of on any architecture. Routines can be
replaced by ‘fix-it-up’ modules which correct bugs.

Tornado currently is written entirely in assembler, and it
is envisaged it will remain that way. Tornado is fast, frugal and
sucks as much power from the processor as it can. It should
only use about 200k of module space (I’ll remind you about all
the things it does!).

All of Tornado’s code is reusable eg; a piece of code it
might use to put a routine on the SWI vector will always have a
SWI attached to it, so that other programmers may use
Tornado’s code. Tornado’s code is written above that of the
current norm, with extremely flexible abilities, proper error
handling and also, it’s fast.

Tornado supports multiple users on one computer, and
stores config files in such a way that they are different for each
user.

Also, little desktop niceties will be implemented eg; a
hotkey which cycles through the currently open windows
(including RISC-OS ones), bringing each to the front and
giving it the caret. And a hotkey which opens the directory
which the pointer (which is dragging a file into the filer) is
over – thus stopping the really annoying times when you drag a
file out to find the directory you want to save into isn’t open.
And a hotkey & menu option to send/take all selected stuff to a
certain app each time. This implements an extremely effective
intertask clipboard, and the file will be converted if necessary.

Finally, some may have heard that it is intended that the RISC-
OS desktop be rewritten to make best use of Tornado’s
facilities. This is a long way off, but it may become impractical
to have the filing system still running on a RISC-OS level and
everything else running at a Tornado level. Rewrites of the

Frobnicate... Issue 4 PAGE 19

filer, display selector, and definitely task manager will
certainly be on the cards. I have a load of things that will be
done if this ever happens, thanks to the people from c.s.a.*. But
for the moment, it’s not happening.

Other miscellaneous things

Also some may have heard of the Tornado verification
procedure. Essentially, commercial writers writing code using
Tornado will be encouraged to send in their program for
testing, for a fee of course. The program will be meticulously
tested, any problems (if any) noted and the writer informed as
to whether the program has passed or not. From hence, the
writer may quote in all adverts that the task passed the test, that
it conforms to certain basic guidelines. Thus, a program with
the test passed with have a considerable advantage in the
marketplace over a non-passed program, as the consumer will
know that a program which has passed the test will be
guaranteed to have certain ‘niceties’ which other programs may
not. Also, copies will be kept of the report sent back to the
writer, and made available for public inspection so that
potential buyers can check out a program before buying.

Far away things

If Tornado really takes off, and for that it needs to be written
first!, it can be expected that a professional commercial suite of
software will be released which will be based around the
VisualXXX available for Windows, but definitely without the
crippling disadvantages that those programs have. Essentially,
it will allow tornado apps to be written very quickly, and that
will justify its price tag. Users will still be able to write tornado
apps without it using the shareware editor, but obviously it will
be slower and more niggly.

Up until this commercial release, that limited shareware
visual editor will also be made available for use by writers not
wishing to fork out for the full development suite. This
shareware editor will be maintained and upgraded on an
indefinite basis – however, not to the extent that it would
trample on features found in the commercial version. :-)

Other ideas include building in software
encryption/compression in on all I/O streams. In other words,
as all I/O is done by tornado, it will be very easy to
compress/decompress data on the fly.

Another thing we’ll get around to eventually is
implementing long filenames and infinite files per directory.
This will be done in conjunction with the Unix zip suite of
programs & TFS, and will work by creating a single archive in
the filecore root directory and then doing all I/O to and from
this archive. Since data can be quickly compressed to 50%
almost on the fly for a floppy disc, it’s not out of view that the
archive will be a full zipped compressed archive.

And finally...

Finally, tornado will remain public domain for all time, and
will be made as accessible to users as possible. Development
on tornado will go with what the users want, not what the
writers think they want. Unlike Acorn, we want to make a
difference, a change – rather than constantly refining the same
RISC-OS 2 over and over again, which is ultimately
self-defeating. Grumbles in the Acorn market are growing
stronger every day, as acorn users watch other platforms GUI’s
get better and better, and yet the RISC-OS GUI stays pretty
much exactly where it is. Increasingly, MCIBTYC arguments
are becoming harder and harder to win. Which, for any
Acorn-loving fanatic, is enough reason for violent action! :-)

Cheers, Niall,

 at ndouglas@digibank.demon.co.uk
at Niall Douglas@Fidonet#2:257/501.13 or Riscnet#7:353/1.0

Remember, don’t write Niall messages unless they are useful messages.
Specifications are kept on Digital Databank BBS and some stuff will also be
printed up here. To add to that, Niall lives in Eire, has to pay to collect mail –
and any self–respecting comms person knows Telecom Eirean (sp?) isn’t

exactly cheap...

DigiBank can be called on:
1 line, 28800bps +44 1707 329306 23hrs
3 lines, 14400bps +44 1707 323531 24hrs

In a future issue, Frobnicate may print some of the
proposed protocols and other specifications. But first,
Frobnicate would like to offer this for your delectation:

Cliff Dobbs, cdobbs@armltd.co.uk

Oooo, a person from ARM Ltd! How’s StrongARM coming along?

> Am I to understand from this posting, that you are developing RO4
> independently from Acorn?

No, we don’t wish to do this. Doing this would destroy the Acorn usership, with PD
stuff being developed for Tornado and commercial stuff for RISC-OS.
 No, what our problem with RISC-OS is that, since RISC-OS 2, there hasn’t really
been any /real/ improvement of the operating system. And with RO3, some of the
supplied software (eg; Pinboard) is positively dire, and not only that the OS runs like a
drain etc etc etc. RO3 was, in many peoples eyes, a disaster, mine included. I still use
RO2 for example, never seeing why I should pay my hard-earned money for a hash of
an operating system. We also believe Acorn are not putting enough resources into
developing the correct areas of RISC-OS, and since they seem intent on developing a
progressively worse and worse SharedCLibrary, and orientating all of the OS around it,
we plan to do something about it. Even if this project never leaves the theoretical side,
maybe it will make Acorn wake up and realise a lot of people are annoyed. Especially
on fidonet, where the lack of development on Basic is really p***ing off a lot of people.

 Look at it this way: the last rumours of dissent with Acorn’s operating systems was in
the days of Arthur. Now they are writing RISC-OS 4, and the same things are beginning
to happen. Maybe it’s about time they started writing an OS, starting again from RO2,
which will really kick ass. Then again, maybe, and probably they won’t. In which case,
Tornado will be here.

Tornado is intended to function as an alternative development of the operating system
from RO2 onwards, and I think you’ll be impressed. It will be written mostly in C, bits
of assembler and some of the demo stuff will be in Basic. It will remain compatible
with current and future versions of RISC-OS, running alongside it rather than on top of
it.

One of the handy things implemented by RO2 over Arthur was the very easy way it is
to extend the existing OS. This will be used to its fullest extent.

I wonder what Acorn made of that reply? ;^)

Frobnicate... Issue 4 PAGE 20

For those readers who didn’t see the last (3rd.) issue of ‘Frobnicate’, this is the second in a
series of articles by me which deal with what else to add to a Risc OS application when you think
you’ve finished it.

Last issue I told you how to ensure that your users get the best set of icons possible, no
matter what their monitor type. At the end, I promised that this issue would include a piece on
iconising. However, I have subsequently changed my mind, as what that article would have dealt
with is rather esoteric and of little practical use to many people. Instead I shall explain the purpose
and value of international support, and the practicalities of using MessageTrans to achieve it.

What is international support, and why should I bother with it?

The phrase ‘international support’ means exactly what it says: making your application truly
international. This has obvious advantages for both the programmer and the user. For the
programmer, his application can gain a much wider user base outside of the United Kingdom.
With the advent of the InterNet and other such means of electronic communication, geography is
now practically irrelevant in the distribution of PD software. Commercial software vendors may
also find international support boost sales considerably, and may find it worthwhile establishing
distribution bases in a variety of countries.

Of course, the foreign user benefits too: he doesn’t have to blunder along with the
application, using whatever English he may know. After all, applications often have to talk in quite
technical language, and even people knowing a fair smattering of English are still likely to have
problems with it.

Acorn themselves have produced a German version of Risc OS, and have attempted to set
up distribution networks for their computers abroad. Therefore the application writer must not get
left behind. In this article I will attempt to explain what should be done to provide international
support for your applications, and how it should be implemented.

How is international support implemented on the Arc?

Many of you will have heard of MessageTrans - it is a module which comes built in to Risc
OS 3 (and can be loaded from disc for Risc OS 2). It’s main purpose is to assist in international
support. Indeed, the OS often uses it internally.

The basic principle of MessageTrans is tokenisation. This means that instead of
‘hard-coding’ a string into your code, it should be referred to by a token instead, and looked up
from a separate file. This abstraction makes it far easier to change the language, since only one
text file containing all the messages used by the application has to be updated, and the code
doesn’t have to be altered at all.

This file is usually called “Messages”. I will make a few comments on a suitable location for
this file later on, but needless to say it is located somewhere inside your <App$Dir>. The basic file

Frobnicate... Issue 4 PAGE 21

By James Larcombe (Wizard)
of DizzyWizard Software.

22-8-95

format is as follows:

<token>:<string>

Example...

Err:An unexpected internal error has occurred.

You can also make more than one token match the same string, thus:

Err/Error:An unexpected internal error has occurred.

This will return the string if either “Err” or “Error” is looked up. The messages file can contain
comments, and these should be prefixed with “#”. Tokens can contain wild cards which will match
any character (”?”). I’ll detail a few more features of the file format later on, but it’s really quite
simple.

Using MessageTrans

By now you are thinking “So... this messages file is very pretty, but how do I use it with my
code?”. Well, that’s where the MessageTrans module comes in. First of all you need to open up
your message file. I suggest you do this as part of your initialisation routine. You can either get
MessageTrans to grab some RMA space for itself, or (more usually) you can get hold of some
memory yourself and tell MessageTrans to use that. The BASIC below shows how to do the latter.

DEF PROCLoadMessages
 msgsname$=”<App$Dir>.Messages”
 SYS “MessageTrans_FileInfo”,,msgsname$ TO msgflags%,,msgsize%
 IF msgflags% AND 1 THEN msgsbuffer%=0 ELSE msgsbuffer%=FNalloc(msgsize%)
 msgsfiledesc%=FNalloc(17+LEN msgsname$)
 $(msgsfiledesc%+16)=msgsname$
 SYS “MessageTrans_OpenFile”,msgsfiledesc%,msgsfiledesc%+16,msgsbuffer%
ENDPROC

In this example, FNalloc is assumed to be your memory-allocation routine. You could use a
sliding heap manager for example, or a ‘clever’ RMA grabbing routine which avoids fragmentation.
Anyway, you end up with a block of memory allocated for the file itself, and another block used for
the descriptions, which is basically used as a file handle in all subsequent MessageTrans calls.

Two SWIs are used in the example, and they are described below. After looking at the
registers returned from the SWIs it is pretty obvious what most of the code does. One thing to
note is that if the messagefile happens to be already in memory (unlikely in most situations) then it
is accessed directly from there.

On entry: R1 = filename

On exit : R0 = flags (bit 0 set if held in memory already, ignore bits 1-31)
 R2 = size of buffer needed to hold file

MessageTrans_FileInfo (&41500)

Frobnicate... Issue 4 PAGE 22

In your finalisation code, you should include something like this... so that all the memory is
freed up:

 SYS “MessageTrans_CloseFile”,msgsfiledesc%
 FNrelease(msgsbuffer%)
 FNrelease(msgsfiledesc%)

...where FNrelease is assumed to be a function that will release memory previously claimed.
Below is the information for the new call...

Looking up a token

Now we’ve learnt how to open and close a messages file, we need to know how to access
the file, and how to look up tokens. As I explained earlier, this is the basis of string substitution.
So... here is a function which, when given a valid token, will refer to the messages file in memory
and return the required string. Again, I’ll go through the SWIs and how it works afterwards.

DEFFNmsgs_lookup(token$)
 LOCAL flags%,length%
 SYS “XMessageTrans_Lookup”,msgsfiledesc%,token$,block%,256,””,””,””,”” TO ,,,l
ength%;flags%
 IF flags% AND 1 THEN = token$
 block%?length%=13 : REM terminates it with [13]
=$block%

This assumes that you have defined a standard 256 byte block called ‘block%’, which you
don’t mind being overwritten by this routine. You can use the same block as you use for WIMP
SWI calls, but it may be preferable to use a separate buffer. Also, you must have called the
procedure I outlined earlier to open the messages file in the first place.

If the token is found in the messages file initialised earlier, then a string is returned. If the
token could not be found, then the function returns the token that you gave it.

On entry: R0 = 4-word data structure

On exit : ---

 R1 = filename

MessageTrans_OpenFile (&41501)

 R2 = buffer to hold file data (0 to use RMA)

Frobnicate... Issue 4 PAGE 23

Here’s the info for “MessageTrans_Lookup”...

Parameter substitution - a handy digression

In the SWI info above, you’ll notice that the 4 registers detailed as being “parameter 0” etc.
were set to “” in my above example. These registers are used for something called parameter
substitution. This means that given up to 4 strings, we can substitute them for certain special parts
of the message looked up. Here is, therefore, more file format info showing how to include
parameter substitution.

ERR:An unexpected internal error has occurred (number %0)
POLL:Polling %0, telephone number %1

These examples are slightly contrived, but suffice to demonstrate the principle. Taking the
first example, imagine in a hypothetical error-handler that we want to inform the user that
something weird has happened, but at the same time we want to return a code useful for
debugging. Supplying the error number in R4 on a call to MessageTrans_Lookup (with the token
set to “ERR”) would substitute this number for the ‘%0’ part of the message itself. Therefore the
error would read something like ‘An unexpected internal error has occurred (number 158)’.

In the second example, we must imagine a fidonet mailer that wants to write a message to
the log file detailing the address and telephone number of the place being polled. It would call
MessageTrans_Lookup with the fido address in R4 and the phone number in R5, and these
strings would get substituted for %0 and %1 respectively. Therefore an example may be: ‘Polling
2:255/93.0, telephone number 01752261434’.

We now need a function that will lookup a message, and substitute the appropriate
parameters. I saw recently a very clever way of doing this, and an example follows. [my thanks go
to whoever did it originally... I think it was intended for use by anyone]

DEF FNmessage0(token$) : = FNmessage4(token$, “”, “”, “”, “”)
DEF FNmessage1(token$,m1$) : = FNmessage4(token$,m1$, “”, “”, “”)
DEF FNmessage2(token$,m1$,m2$) : = FNmessage4(token$,m1$,m2$, “”, “”)

MessageTrans_Lookup (&41502)

On entry: R0 = 4-word data structure
 R1 = Token (terminated by any ctrl char, space, �,� or �)�)
 R2 = buffer
 R3 = buffer size
 R4 = parameter 0
 R5 = parameter 1
 R6 = parameter 2
 R7 = parameter 3

On exit: R1 = pointer to token-terminator
 R2 = result string
 R3 = size of result

Frobnicate... Issue 4 PAGE 24

DEF FNmessage3(token$,m1$,m2$,m3$) : = FNmessage4(token$,m1$,m2$,m3$, “”)
DEF FNmessage4(token$,m1$,m2$,m3$,m4$)
 LOCAL flags%,length%
 SYS “XMessageTrans_Lookup”,msgsfiledesc%,token$,block%,256,m1$,m2$,m3$,m4$ TO
,,,length%;flags%
 IF flags% AND 1 THEN = token$
 block%?length% = 13
=$block%

Do you see what is happening here? If we want to substitute no parameters, we call
FNmessage0(token$). For 1 parameter, we call FNmessage1(token$,m1$). For 2, we call
FNmessage2(token$,m1$,m2$) and so on, all the way up to 4. All of these ‘interim’ functions call
FNmessage4, but will the unused parameters set to “”.

This set of functions should suffice for any purpose. I’ll explain some more important uses of
parameter substitution later on, but needless to say it is a very powerful ‘spin-off’ of internation
support. One thing to note is that obviously the strings you wish to substitute should NOT be
words of a language, as this would defeat the object of MessageTrans and this article!

Anyway, getting back to our core topic of international support, we’ve now covered most of
the mechanics of using MessageTrans. The module offers several other calls, which do come in
handy sometimes, but these are the ones which are needed for international support. The others,
whilst outside the scope of this article, are still worth investigating.

Uses of MessageTrans

So, we can now load up nationality-specific strings from a centralized resource. To give you
a few ideas about what use this actually is, I’m going to give a few examples of the main uses of
MessageTrans.

Firstly, I should say that MessageTrans should NOT be used to read in icon texts for
templates. Templates are separated from the code already, so there isn’t any need to fiddle
around re-setting icon texts etc. from MessageTrans. What you should do is have a different
Templates file for each different nationality supported by your application. More information on this
later, in the section regarding structuring your internal application directory.

The main use of MessageTrans is for interactive help. Risc OS software SHOULD support
interactive help, but it is surprising how many applications don’t. However, yours should. If any
one wants any help on how to give interactive help on windows and menus, then wait around: I
might possibly consider this as a suitable subject for a future “Finishing Touch”.

Anyway, when you support interactive help, rather than having the help text hard-coded into
the program itself it is internationally better to load it up from the messages file. You may wish to
number your tokens “H01”,”H02”,”H03” etc., where the number denotes the icon number that the
token gives help on. That way you can rapidly and simply construct the correct token from the icon
number, and lookup the correct string.

Frobnicate... Issue 4 PAGE 25

Parameter substitution can be of great help for complex, context-sensitive helptexts. As an
example...

H01:This icon shows how much disc space is used for virtual memory. At present,
%0 kilobytes are used. Click the right arrow to increase this figure, and the
left arrow to decrease it.

A quick word about helptext - make it clear, but quite concise. Also, remember to include text
for greyed out menus items, eg “This menu item is greyed out because there is no block selected”
rather than “Move pointer right to save block” when you obviously can’t! This avoids confusing the
novice user, and is nicer, anyway. Don’t overdo humour, either: if the user wanted a laugh he/she
would be using a PC. *9-D

Other common uses of MessageTrans are error messages, log file text and prompts. There
are many, many more: use your imagination! You can of course use all of this outside the desktop
too, so the possibilities are endless.

Now I’m going to discuss some other issues of international support that are of considerable
importance, especially now we can use MessageTrans. Firstly, there is the internal layout of your
application.

Internal application directory structure

For an efficient international support system, it is important to structure your directories
properly. This article isn’t really a suitable place to make comments about structuring general
resources etc., but I will make a few notes about where to put nationality-specific things.

I would suggest that you have a directory inside your application called “Resources”. Inside
this should go any general resources, but most importantly there should be further subdirectories,
called for instance “UK”, or “Germany”. In each of these are the resources that need to be
different for each country. I would suggest a minimum of the messages file and the templates, and
possibly you might like to put other things in there too.

With a setup like this, your application could theoretically scan the “Resources” directory
using OS_File, taking notice only of other directories, and thus build up a list of supported
countries. This could then be used to provide a country-selection menu for the user, as in Arc-
Binkley.

This is only a suggestion, and isn’t essential, but it seems to be to be a fairly efficient way of
doing things.

Other international support issues

I’ve covered practically everything to do with messages files now, so it only remains to give a
few words of advice about other international support matters. There is a useful (if short) section
in the style guide relating to all this, and whilst I usually try to avoid duplicating that publication
here, it is worth re-iterating some of the points raised.

First, avoid using icons that only really make sense if your first language in English. In other
words, don’t use icons that rely on a certain pun, or play on words. Also, you should avoid icons

Frobnicate... Issue 4 PAGE 26

which are only relevant in specific cultures. I can’t think of any examples of this, but make sure the
metaphor works abroad as well as in England. Obviously, don’t use text in graphics if you can
help it, since this will be trickier to replace.

Don’t make any assumptions regarding the character set or keyboard layout, and allow the
use of ALT and top-bit set characters in your application. This means that people from other
countries will be able to generate all their favourite accents etc., and will be able to use their
national character set.

If possible, allow for a comma to be used in the place of the full stop when used in decimal
point values. Make sure you use the system calls for dates etc., since that way the user will be
able to configure his or her own preferred date style.

Finally, you might like to consider changing language-specific mnemonic key short-cuts.
These are the ones where the mnemonic is the first letter of a word. These rarely work in other
languages, unless you are lucky.

Conclusions

Hopefully you’ve read something in this article that has made you think about changing the
way you do things. Indeed, I should expect so: I hardly ever see application handle international
support properly. Not even the ‘big name’ apps all do, as some of you will have noticed.

One thing I’ve not touched upon is the translation itself : if you are not fluent in another
language it is probably best to pay some sort of translation bureau to do the work for you. You
should consider supporting most European countries, but obviously for commercial applications
you will only need to support those countries in which you will be distributing your software.

Any queries with any of this, drop me a line and I’ll do my best. Thanks must at this stage go
to Guttorm Vik for writing StrongHelp (where I learnt about the SWIs myself) and whoever wrote
the clever bit of code I used in the parameter-substitution bit.

NEXT ISSUE: Any requests? Otherwise it could be interactive help, desktop boot files,
DragASprite or indeed anything else that begins to interest me!

Written by James Larcombe.
Email: dizzywiz@digibank.demon.co.uk

Fidonet: 2:255/93.4
© James Larcombe 1995.

Frobnicate... Issue 4 PAGE 27

The laws regarding copyright affect everybody:
whether you write a really simple program, a
complex program or if you just use other people’s
software.

Have you, though, ever wondered what happens
when you slap a © on your work – or indeed if you
are entitled to? What about your rights regarding
other people’s work? Can you ’hack’ a program?

Well, have a read of this. It should pretty much
clarify the situation in the EC.

[only in law can you get away with stating a million
paragraphs with the word “Whereas”!]

No L 122/42
Official Journal of the European Communities 17.5.91

II

(Act whose publication is not obligatory)

COUNCIL DIRECTIVE
of 14 May 1991

on the legal protection of computer programs

(91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European
Economic Community and in particular Article 100a thereof,

Having regard to the proposal from the Commission (1),

In cooperation with the European Parliament (2),

Having regard to the opinion of the Economic and Social
Committee (3),

Whereas computer programs are at present not clearly
protected in all Member States by existing legislation and such
protection, where it exists, has different attributes;

Whereas the development of computer programs requires the
investment of considerable human, technical and financial
resources while computer programs can be copied at a fraction
of the cost needed to develop them independently;

Whereas computer programs are playing an increasingly
important role in a broad range of industries and computer
program technology can accordingly be considered as being of
fundamental importance for the Community’s industrial
development;

Whereas certain differences in the legal protection of computer
programs offered by the laws of the Member States have direct
and negative effects on the functioning of the common market
as regards computer programs and such differences could well
become greater as Member States introduce new legislation on
this subject;

Whereas existing differences having such effects need to be
removed and new ones prevented from arising, while
differences not adversely affecting the functioning of the
common market to a substantial degree need not be removed or
prevented from arising;

Whereas the Community’s legal framework on the protection
of computer programs can accordingly in the first instance be
limited to establishing that Member States should accord
protection to computer programs under copyright law as
literary works and, further, to establishing who and what
should be protected, the exclusive rights on which protected
persons should be able to rely in order to authorize or prohibit
certain acts and for how long the protection should apply;

Whereas, for the purpose of this Directive, the term ‘computer
program’ shall include programs in any form, including those
which are incorporated into hardware; whereas this term also
includes preparatory design work leading to the development
of a computer program provided that the nature of the
preparatory work is such that a computer program can result
from it at a later stage;

Whereas, in respect of the criteria to be applied in determining
whether or not a computer program is an original work, no tests
as to the qualitative or aesthetic merits of the program should
be applied;

Whereas the Community is fully committed to the promotion
of international standardization;

Frobnicate... Issue 4 PAGE 28

 The big © The question of software copyright

Whereas the function of a computer program is to
communicate and work together with other components of a
computer system and with users and, for this purpose, a logical
and, where appropriate, physical interconnection and
interaction is required to permit all elements of software and
hardware to work with other software and hardware and with
users in all the ways in which they are intended to function;

Whereas the parts of the program which provide for such
interconnection and interaction between elements of software
and hardware are generally known as ‘interfaces’;

Whereas this functional interconnection and interaction is
generally known as ‘interoperability’; whereas such
interoperability can be defined as the ability to exchange
information and mutually to use the information which has
been exchanged;

Whereas, for the avoidance of doubt, it has to be made clear
that only the expression of a computer program is protected
and that ideas and principles which underlie any element of a
program, including those which underlie its interfaces, are not
protected by copyright under this Directive;

Whereas, in accordance with this principle of copyright, to the
extent that logic, algorithms and programming languages
comprise ideas and principles, those ideas and principles are
not protected under this Directive;

Whereas, in accordance with the legislation and jurisprudence
of the Member States and the international copyright
conventions, the expression of those ideas and principles is to
be protected by copyright;

Whereas, for the purposes of this Directive, the term ‘rental’
means the making available for use, for a limited period of time
and for profit-making purposes, of a computer program or a
copy thereof; whereas this term does not include public
lending, which, accordingly, remains outside the scope of this
Directive;

Whereas the exclusive rights of the author to prevent the
unauthorized reproduction of his work have to be subject to a
limited exception in the case of a computer program to allow
the reproduction technically necessary for the use of that
program by the lawful acquirer;

Whereas this means that the acts of loading and running
necessary for the use of a copy of a program which has been
lawfully acquired, and the act of correction of its errors, may
not be prohibited by contract; whereas, in the absence of
specific contractual provisions, including when a copy of the
program has been sold, any other act necessary for the use of
the copy of a program may be performed in accordance with its
intended purpose by a lawful acquirer of that copy;

Whereas a person having a right to use a computer program
should not be prevented from performing acts necessary to
observe, study or test the functioning of the program, provided

that these acts do not infringe the copyright in the program;

Whereas the unauthorized reproduction, translation, adaptation
or transformation of the form of the code in which a copy of a
computer program has been made available constitutes an
infringement of the exclusive rights of the author;

Whereas, nevertheless, circumstances may exist when such a
reproduction of the code and translation of its form within the
meaning of Article 4 (a) and (b) are indispensable to obtain the
necessary information to achieve the interoperability of an
independently created program with other programs;

Whereas it has therefore to be considered that in these limited
circumstances only, performance of the acts of reproduction
and translation by or on behalf of a person having a right to use
a copy of the program is legitimate and compatible with fair
practice and must therefore be deemed not to require the
authorization of the rightholder;

Whereas an objective of this exception is to make it possible to
connect all components of a computer system, including those
of different manufacturers, so that they can work together;

Whereas such an exception to the author’s exclusive rights may
not be used in a way which prejudices the legitimate interests
of the rightholder or which conflicts with a normal exploitation
of the program;

Whereas, in order to remain in accordance with the provisions
of the Berne Convention for the Protection of Literary and
Artistic Works, the term of protection should be the life of the
author and fifty years from the first of January of the year
following the year of his death or, in the case of an anonymous
or pseudonymous work, 50 years from the first of January of
the year following the year in which the work is first published;

Whereas protection of computer programs under copyright
laws should be without prejudice to the application, in
appropriate cases, of other forms of protection; whereas,
however, any contractual provisions contrary to Article 6 or to
the exceptions provided for in Article 5 (2) and (3) should be
null and void;

Whereas the provisions of this Directive are without prejudice
to the application of the competition rules under Articles 85
and 86 of the Treaty if a dominant supplier refuses to make
information available which is necessary for interoperability as
defined in this Directive;

Whereas the provisions of this Directive should be without
prejudice to specific requirements of Community law already
enacted in respect of the publication of interfaces in the
telecommunications sector or Council Decisions relating to
standardization in the field of information technology and
telecommunication;

Whereas this Directive does not affect derogations provided for
under national legislation in accordance with the Berne
Convention on points not covered by this Directive,

Frobnicate... Issue 4 PAGE 29

HAS ADOPTED THIS DIRECTIVE:

Article I

Object of protection

1. In accordance with the provisions of this Directive, Member
States shall protect computer programs, by copyright, as
literary works within the meaning of the Berne Convention for
the Protection of Literary and Artistic Works. For the purposes
of this Directive, the term ‘computer programs’ shall include
their preparatory design material.

2. Protection in accordance with this Directive shall apply to
the expression in any form of a computer program. Ideas and
principles which underlie any element of a computer program,
including those which underlie its interfaces, are not protected
by copyright under this Directive.

3. A computer program shall be protected if it is original in the
sense that it is the author’s own intellectual creation. No other
criteria shall be applied to determine its eligibility for
protection.

Article 2

Authorship of computer programs

1. The author of a computer program shall be the natural
person or group of natural persons who has created the
program or, where the legislation of the Member State permits,
the legal person designated as the rightholder by that
legislation. Where collective works are recognized by the
legislation of a Member State, the person considered by the
legislation of the Member State to have created the work shall
be deemed to be its author.

2. In respect of a computer program created by a group of
natural persons jointly, the exclusive rights shall be owned
jointly.

3. Where a computer program is created by an employee in the
execution of his duties or following the instructions given by
his employer, the employer exclusively shall be entitled to
exercise all economic rights in the program so created, unless
otherwise provided by contract.

Article 3

Beneficiaries of protection

Protection shall be granted to all natural or legal persons
eligible under national copyright legislation as applied to
literary works.

Article 4

Restricted Acts

Subject to the provisions of Articles 5 and 6, the exclusive
rights of the rightholder within the meaning of Article 2, shall
include the right to do or to authorize:

(a) the permanent or temporary reproduction of a computer
program by any means and in any form, in part or in whole.
Insofar as loading, displaying, running, transmission or storage
of the computer program necessitate such reproduction, such
acts shall be subject to authorization by the rightholder;

(b) the translation, adaptation, arrangement and any other
alteration of a computer program and the reproduction of the
results thereof, without prejudice to the rights of the person
who alters the program;

(c) any form of distribution to the public, including the rental,
of the original computer program or of copies thereof. The first
sale in the Community of a copy of a program by the
rightholder or with his consent shall exhaust the distribution
right within the Community of that copy, with the exception of
the right to control further rental of the program or a copy
thereof.

Article 5

Exceptions to the restricted acts

1. In the absence of specific contractual provisions, the acts
referred to in Article 4 (a) and (b) shall not require
authorization by the rightholder where they are necessary for
the use of the computer program by the lawful acquirer in
accordance with its intended purpose, including for error
correction.

2. The making of a back-up copy by a person having a right to
use the computer program may not be prevented by contract
insofar as it is necessary for that use.

3. The person having a right to use a copy of a computer
program shall be entitled, without the authorization of the
rightholder, to observe, study or test the functioning of the
program in order to determine the ideas and principles which
underlie any element of the program if he does so while
performing any of the acts of loading, displaying, running,
transmitting or storing the program which he is entitled to do.

Frobnicate... Issue 4 PAGE 30

Article 6

Decompilation

1. The authorization of the rightholder shall not be required
where reproduction of the code and translation of its form
within the meaning of Article 4 (a) and (b) are indispensable to
obtain the information necessary to achieve the interoperability
of an independently created computer program with other
programs, provided that the following conditions are met:

(a) these acts are performed by the licensee or by another
person having a right to use a copy of a program, or on their
behalf by a person authorized to to so;

(b) the information necessary to achieve interoperability has
not previously been readily available to the persons referred to
in subparagraph (a); and

(c) these acts are confined to the parts of the original program
vhich are necessary to achieve interoperability.

2. The provisions of paragraph 1 shall not permit the
information obtained through its application:

(a) to be used for goals other than to achieve the
interoperability of the independently created computer
program;

(b) to be given to others, except when necessary for the
interoperability of the independently created computer
program; or

(c) to be used for the development, production or marketing of
a computer program substantially similar in its expression, or
for any other act which infringes copyright.

3. In accordance with the provisions of the Berne Convention
for the protection of Literary and Artistic Works, the provisions
of this Article may not be interpreted in such a way as to allow
its application to be used in a manner which unreasonably
prejudices the right holder’s legitimate interests or conflicts
with a normal exploitation of the computer program.

Article 7

Special measures of protection

1. Without prejudice to the provisions of Articles 4, 5 and 6,
Member States shall provide, in accordance with their national
legislation, appropriate remedies against a person committing
any of the acts listed in subparagraphs (a), (b) and (c) below:

(a) any act of putting into circulation a copy of a computer
program knowing, or having reason to believe, that it is an
infringing copy;

(b) the possession, for commercial purposes, of a copy of a
computer program knowing, or having reason to believe, that it
is an infringing copy;

(c) any act of putting into circulation, or the possession for
commercial purposes of, any means the sole intended purpose
of which is to facilitate the unauthorized removal or
circumvention of any technical device which may have been
applied to protect a computer program.

2. Any infringing copy of a computer program shall be liable to
seizure in accordance with the legislation of the Member State
concerned.

3. Member States may provide for the seizure of any means
referred to in paragraph 1 (c).

Article 8

Term of protection

1. Protection shall be granted for the life of the author and for
fifty years after his death or after the death of the last surviving
author; where the computer program is an anonymous or
pseudonymous work, or where a legal person is designated as
the author by national legislation in accordance with Article 2
(1), the term of protection shall be fifty years from the time that
the computer program is first lawfully made available to the
public. The term of protection shall be deemed to begin on the
first of January of the year following the abovementioned
events.

2. Member States which already have a term of protection
longer than that provided for in paragraph I are allowed to
maintain their present term until such time as the term of
protection for copyright works is harmonized by Community
law in a more general way.

Article 9

Continued application of other legal provisions

1. The provisions of this Directive shall be without prejudice to
any other legal provisions such as those concerning patent
rights, trade-marks, unfair competition, trade secrets, protection
of semi-conductor products or the law of contract. Any
contractual provisions contrary to Article 6 or to the exceptions
provided for in Article 5 (2) and (3) shall be null and void.

2. The provisions of this Directive shall apply also to programs
created before 1 January 1993 without prejudice to any acts
concluded and rights acquired before that date.

Frobnicate... Issue 4 PAGE 31

Article 10

Final provisions

1. Member States shall bring into force the laws, regulations
and administrative provisions necessary to comply with this
Directive before 1 January 1993.

When Member States adopt these measures, the latter shall
contain a reference to this Directive or shall be accompanied by
such reference on the occasion of their official publication. The
methods of making such a reference shall be laid down by the
Member States.

2. Member States shall communicate to the Commission the
provisions of national law which they adopt in the field
governed by this Directive.

Article 11

This Directive is addressed to the Member States.

Done at Brussels, 14 May 1991.

For the Council

The President

J. F. POOS

References:
(1) OJ No C 91, 12. 4. 1989, p. 4; and

OJ No C 320, 20. 12. 1990, p. 22.
(2) OJ No C 231, 17. 9. 1990, p. 78; and Decision of

17 April 1991, yet published in the Official
Journal).

(3) OJ No C 329, 30. 12. 1989, p. 4.

Your “original works” are automatically covered by
copyright as you have created it. However it is best
to make totally sure by expressing the copyright in
your programs. The typical convention is:
<copyright symbol> Copyright <your name> <date>

Eg:
© Copyright Richard Murray 1994.

You need the copyright symbol as certain countries
may not understand the meaning of “copyright” (in

English). Technically, also the convention of “(C)”
is not strictly correct. But on the Acorn we need not
worry. Our character set has a copyright character
(ASCII 169) which can be keyed with Shift+Alt+C.

You can make small variations on the theme if you
are releasing various different versions in a year. For
example in my programs I would use:

© Richard Murray 2nd October 1995
which helps me also to know which version is
which.

A Light In The Dark (found on TWoC)

For years it has been believed that electric bulbs emit light.
However, recent information from Bell Labs has proven otherwise.
Electric bulbs do not emit light, they suck dark. Thus they are now
called dark suckers. The Dark Sucker Theory, according to a Bell Labs
spokesperson, proves the existence of dark, that dark has a mass
heavier than that of light, and that dark travels faster than light.

The basis of the Dark Sucker Theory is that electric bulbs suck
dark. Take for example the dark suckers in the room where you are.
There is less dark in the immediate area of the dark suckers than there
is elsewhere in the room. The larger the dark sucker, the greater its
capacity to suck dark. Dark suckers in a parking lot have a much
greater capacity than the ones in this room. As with all things, dark
suckers don’t last forever. Once they are full of dark they can no longer
suck. This is proven by the black spot on a full dark sucker. A candle
is a primitive dark sucker. A new candle has a white wick. You will
notice that, after the first use, the wick turns black -- representing all the
dark which has been sucked into it. If you hold a pencil next to the wick
of an operating candle, the tip will turn black because it got in the way
of the dark flowing into the candle.

Unfortunately, these primitive dark suckers have a very limited
range. There are, fortunately, portable dark suckers. The bulbs in
these cannot handle all of the dark by themselves, and require the use
of additional dark storage units. When the dark storage unit, referred to
by some as a battery, is full it must either be emptied or replaced
before the portable dark sucker can operate again.

Dark has mass. When dark goes into a dark sucker, friction
from this mass generates heat. Thus it is not wise to touch an
operating dark sucker. Candles present a special hazard because the
dark must travel in the solid wick instead of through glass. This
generates a large quantity of heat, which makes it inadvisable to touch
an operating candle.

Dark is also heavier than light. If you swim deeper and deeper
you notice that it slowly gets darker and darker. When you reach a
depth of approximately 80 meters, you are in total darkness. This is
because the heavier dark sinks to the bottom of the water and the
lighter light floats to the top. The immense power of dark can be
utilized to humankind’s advantage. Dark which has settled to the
bottoms of lakes can be pushed through turbines to generate electricity.
In this way dark can be forced into the oceans where it can be safely
stored.

Prior to the invention of the turbine it was much more difficult to
get dark from rivers and lakes to the oceans. The Indians recognized
this problem and tried to solve it. When on a river in a canoe travelling
in the same direction as the flow of dark, Indians paddled slowly, so as
not to stop the flow of dark. When they travelled against the flow of
dark they paddled quickly to help push the dark along its way.

Finally, it becomes clear that dark is faster than light. If you
stand in an illuminated room in front of a closed, dark closet you notice
that, as you slowly open the closet door, light slowly enters the closet.
However the dark moves so quickly that you are not able to see the
dark leave the closet.

In conclusion, scientists from the Bell Labs have noted that
dark suckers make our lives easier and more enjoyable. So the next
time you look at an electric bulb remember that its function is actually
that of a dark sucker.

Frobnicate... Issue 4 PAGE 32

ANTS!!!
Ants

by Nava Whiteford
No, I’ve not gone completely mad!!! (That happened long
ago).

I’m not talking about the kind of Ant that gets into your picnic
basket and messes up you food. I’m talking about a different
type of Ant – a computerised Ant.

About 20 years ago a man call John Conway devised a set of
rules call Life. Since then, Life has been coded and re-coded
for just about every computer. So most users have heard of it.
This type of “game” or set of rules is called cellular automata.
Now basically, this means that you have got lots of cells (in life
each animal is a cell) which move about according to a set of
rules.
The odd thing about cellular automata is that with very
relatively few simple rules you get a very complex/chaotic
result (e.g In Life when you put down a couple of cells and get
a big blob after a few generations). Another odd thing is that
the only way to find out what you will get after a certain
number of generations is to go through the generations. There
is no formula that will give you the answer. This makes cellular
automata interesting (and annoying) for physicists who are
trying to find a TOE (or Theory of Everything) in fact it messes
them up quite a bit I mean if they can’t figure out this computer
simulation out how have they got any hope of doing it with
something like the universe?

[editors note: In fact, certain automa patterns have a
predictable outcome, for
example, the diagram
shows a “blinker”. But
this is very beside-the-point! Sorry Nava, please continue!]

Anyway, people tend to think that the problem with Life is that
the rules are too complex and the big mess you get can be
justified by these rules. So some bloke came up with Ants. And
this is what the remainder of this article is about.

The ant(s) live on a grid. Each cell of the grid can be black or
white. To start with our cell are going to be black but if you
like you can have yours white, it doesn’t really matter. The
rules for Ants are much simpler than for Life.

Here they are:

1. When an ant lands on a cell the colour of that cell is
flipped B to W, W to B

2. The ant moves one cell per generation it cannot move
diagonally.
3. If the ant lands on a white cell it turns left. If it lands
on a black cell it turns right.

Nice and simple. And the code to do that is only a few lines
long:

1 for(;;)
2 {
3 colour=os_point(antx,anty);
4 if(colour==0) {os_gcol(0 ,1); heading++; if(heading== 4) heading=0; }
5 if(colour==1) {os_gcol(0 ,0); heading--; if(heading==-1) heading=3; }
6 os_rectanglefill(antx, anty, 1, 1);
7
8 if(heading==0) anty++;
9 if(heading==1) antx++;
10 if(heading==2) anty--;
11 if(heading==3) anty++;
12 }

Not too complex is it. (A BASIC version is also supplied)

Okay, let’s have a look at this then...

Right, lines 1-3 are quite simple. Line 3 just tells us the colour
of the cell where that ant is.
Line 4 changes the colour to be put on to that cell flipping it
from black to white. Line 5 does this the other way round.
Line 4 then says add 1 to the heading (heading++;) Then says
if heading is 4 then heading = 0 this loops it back round again.

The headings work like so:

 N
 .
 / \
 | Up the screen is North.
 |

When going North heading = 0
When going East heading = 1
When going South heading = 2
When going West heading = 3

You can see that if you add one to the heading you will then
turn right and if you take one from the heading you will then
turn left. Then if heading is 0 and if heading is 3 are just to
make it loop round to the beginning again.

Frobnicate... Issue 4 PAGE 33

The next bit Lines 8-11 just make the ant go in the direction of
the heading.

So we have got a simple one–ant program.

From that we can make a simple multi–ant program and mess
about with it in other ways (See “colourful” for some fun :-)).

Things can get very odd with ants (Take a look at multi–ant
with the initial settings). There are lots of thing I haven’t
covered (highways, diamonds etc.) and maybe will do in
follow-up article (Richard?) [Editors note: Got for it!]. Maybe
once you’ve been given a chance to mess about with the
programs and make up your own patterns. Then we could
shove some of your stuff in the article too. Send your stuff to
me on the DigiBank.

A MultiAnt program, a Single ant program„ and a colourful
version are all in the Ant.Progs dir. There is also a BASIC
program in the Prog dir. All the c source is in the Ants dir.
Some Info about the programs are in the ReadMe and
Progs.ProgInfo files.

Oh, and try these settings on MultiAnt

2 ants

ant 0 x = 70
ant 0 y = 70
ant 0 heading = 3

ant 1 x = 73
ant 1 y = 70
ant 1 heading = 3

Good, err?

Nava Whiteford (edited by Richard Murray)

In a first for Frobnicate, you’ll find this stuff
in the “Ants” subdirectory of the Frobnicate
archive.

Many thanks to Nava for this. These programs are those
things you see on Acorn User and think “Oh god, not
another silly graphic thing”. Amazing how I managed to
spend two hours staring at my screen watching these
blocks move. A hint for those of you with the BASIC
version, shove an “A=GET” in the loop so you can see
each move at a time.

[wow: Frobnicate publishes something intellectual.
What’s going on!? Hey, yey, yey, yeh-eh – hey, yey, yey.
I said “Hey, what’s going on?”. :-)]

Centronics Control
Interface

even when the data on the printer port disappears. The rising
edge of the STROBE triggers the monostable which sends
back the BUSY and ACK signals (so the computer knows that
that data was received okay). The 78L05 is a 5V regulator to
power the ICs. There are two types of output, four status LEDs
and four relays. You could pick’n’mix. It’s a simple circuit.
The transistors buffer the relays to the latch, the diodes stop
EMF spikes from melting the transistors.
The relays are turned on by sending a high bit to the latch. The
LEDs, in reverse, are turned off by sending a high bit. So to
turn on LED 1, 2 and 4 and active relays 2 and 3, you would
send “00100110” which is ASCII character 37 or “%”. Play
around with it. You’ll soon see.
Note: Don’t forget to suppress the linefeeds when you send the
data. In BASIC, place a semicolon after a print statement, or
send directly to the printer.

Here, the system is arranged thus:
Relay 1 = Controls cine camera frame release (animation mode)
Relay 2 = Focus stepper motor pulse
Relay 3 = Focus stepper motor direction
Relay 4 = Light switch
LED 1 = Frame will be taken
LED 2 = Focus telephoto
LED 3 = Focus wide

LED 4 = Lights on

Enjoy!!!

2K

2K

2K

2K

1K

1K

1K

1K

+5V

10K

0.1µF

0V

1 2 7

11

13

14

53

8(Q)

6(Q)
10

ACK

11

BUSY

1

STROBE
0V

9 - D7

8 - D6

7 - D5

6 - D4

5 - D3

4 - D2

3 - D1

2 - D0

74LS374

3

4

7

8

13

14

17

18

11 1 10

19

16

15

12

9

6

5

2

20

LED

LED

LED

LED

10µF 10µF

0V 0V 0V

78L05

Diodes = 1N4001
Relays = Anything suitable... OM1?
Transistors are BC237 or equivalent.

+12V

0V

0V

0V

0V

74LS122

This simple circuit consists
of a data latch to grab and
hold the data on the 8 data
lines, and a monostable to
fake the ACK and BUSY
signals. The way it works is
every time the STROBE goes
low, the latch restores its data
to match the data sent out of
the printer port. The output
from the latch will be present

Frobnicate... Issue 4 PAGE 34

The general consensus regarding Easy PeeC was
“take a hike!!!”. So I figured I might try something a
little more ’techie’.

Firstly, we’ll have a little bit of fun. The on-line
pages of tunefs, like all Berkeley commands, ends
with a ’Bugs’ section. In this case it read:

Bugs:
This program should work on mounted
and active file systems, but it
doesn’t. Because the superblock is
not kept on the buffer cache, the
program will only take effect if it
is run on dismounted file systems;
if run on the root file system, the
system must be rebooted.
You can tune a file system, but you
can’t tune a fish.

Honest! But you won’t find this anymore. When
people moves to SVr4 UNIX, the “Bugs” section
was renamed “Notes” (as if that fools anybody) and
all the sense of humour was removed – that’s a great
shame as C and UNIX require a huge sense of
humour in order to be used effectively.

One thing I’m sure you didn’t know was that an
amount of C was actually written for the benefit of
the compiler writer, not the programmer. Examples:

• Arrays start at 0 instead of 1, so in an array
dimensioned to [100], writing data to [100] could
case a crash as the array actually goes [0]...[99].
• The main C types map onto underlying hardware.
C didn’t support FP ops until the computer itself did.
• The auto keyword is useless. You get it by
default so why.......
• Array names “decay” into pointers. It makes life
easier to treat arrays as pointers instead of writing
complex routines to handle arrays. But arrays and
pointers are not the same...

• No nested functions. This makes compilation
easier.
• The register keyword. This gave the compiler
writer an idea about which variables the programmer
expected to be most frequently referenced, and
hence could be kept in registers. This is a waste of
time and you get better code if the compiler allocates
registers for individual uses of a variable rather than
reserving them. The register keyword simplifies
a compiler by giving this headache to the
programmer.

Since this column is short this issue, I’ll leave you
with this:

The suggestion of undefined instructions causing
your computer to explode isn’t as far fetched as it
might seem. The original IBM PC monitor operated
at a horizontal scan rate supplied by the video
controller. The flyback transformer relied on this
being a reasonable frequency. However, it was
possible for the software to set the video scan rate to
zero, thus feeding a constant voltage into the
primary winding of the flyback transformer. This
then acted like a resistor and dissipated its power as
heat instead of sending its power to the screen. This
burned out the monitor in seconds.

There are also rumours that it is possible to burn out
a BBC micro with a simple looping routine to toggle
all the address and data lines on and off as quickly as
possible.

Well, at least this issue’s Not so Easy PeeC was at
least readable by regular human beings. :-)

Frobnicate... Issue 4 PAGE 35

Easy Pe eCNOT SO

Analysis of Frobnicate
The results for this article were compiled on 28th August 1995. It is meant as an indication.

RESULTS FOR FROBNICATE 1, 2 & 3:

Arcade BBS:
Ovation 7 / 16 / 10
Text & graphics 43 / 35 / 27
Impression X / X / 12

ArcTic BBS:
Ovation X / 3 / X
Text & graphics X / 4 / 3
Impression X / X / 0

Digital Databank BBS:
Ovation 2 / 10 / 0
Text & graphics 14 / 6 / 2
Impression X / X / 4

Plasma Sphere & Northern ARM BBS’s:
Ovation 7 / 1 / X
Text & graphics X / 0 / X
Impression X / X / X

TOTALS:
Ovation 16 / 30 / 10
Text & graphics 57 / 45 / 32
Impression X / X / 16

Total inclusive 73 / 75 / 58

I am disappointed by the return of the Reader Survey. I received only 6, with is 10%. All the rest of you – if
you want this magazine to try to please you more – please send back your user survey. I can take criticism
you know! ;^)

Here are some ideas in the thinking pot:
• Simple DIY projects.
• Info on ’interesting’ Internet utilities.
• Interesting WWW/ftp sites.
• Info on the PD/ShareWare/Comms scene.

If you’d some software reviewed, please contact me. I’ll be happy to kill^H^H^H^Hreview anything that
will fit in under 1Mb of disc space [I’ve only 5Mb freespace. :-(((].

General Synopsis for 3rd October 1995:

I feel Frobnicate is doing fairly well. I started this
project in order to see how viable it is to create a
magazine and pass it around. It appears
Frobnicate has between 60 and 80 readers. As
Frobnicate is not printed and sold, it’ll never
match AU or Archive or RiscUser – but I’m
happy with my current readership. Some more
feedback would be nice though. :-)

Many many many many thanks go to Niall
Douglas, James Larcombe and Nava Whiteford.
Without your input Frobnicate would surely have
died in the middle of issue 3.

For getting me this far, I’d like to also thank:
Hugo Fiennes, John Stonier, DaviD Dade, David
Coleman, Steve Pursey, Graham Cant, Thomas
Olsson, Hans Ringdahl, Ricky Sarge, Helen
Rayner, Keith Hall, Robin Abecasis, Graeme
Read, Andrew Lobel (yup, I’m mad!), Daniel
Aston, Rick Crook, Dane Koekoek, Robbie
Record, Nick Hutton, Keith Marlow, Jp, Chris
Jackson, Roy Moore, everybody at Acorn User,
Charlie Bayliss, Acorn Computers, Bridget
Fonda, Tetley, Dire Straits, Stephen King,
Azathoth, Shumart! and Sambo. Anybody I
forgot?

Finally, a touchy point.
Thank you, Loretta, for interesting chats...

Frobnicate... Issue 4 PAGE 36

When you you plan on releasing an
Impression version of Frobnicate?

Around about now I think. :-)

Do you plan to release Frobnicate
in a PC compatible format, for
example GIFs and linefeed-
terminated text in a PKZip archive?

Tell me... Why would a person writing this
magazine to target “techie” Acorn users wish to
support PCs? It’s about time you PC people
could read Acorn sprites via a converter. :-)
After all, as I am trying to use more DrawFiles -
how do you anticipate I convert them to your
equivalent MetaFile?

I am an Amiga user and...

...sorry dude, wrong mag. Byeee!!!

That’s about it for the mailbag. <sigh>...

SysOps...
Have you ever wished for
a utility to allow you to
read the file(s) of your
choice remotely? If
so – take a look at the
new demo, ViewFile,
available from good
BBSs.

Another free program
from BudgieSoft.

Contact: “Richard Murray”, 2:254/86.1@Fidonet or “rmurray@digibank.demon.co.uk”.....

 ViewFile door, by BudgieSoft. Version 1ù00á

- Throwing mail to a mailbox set for redirection didn’t redirect: fixed.

+ New command for SysOp utils to fix lookup<>data links - untested on cryton
 as everything reports OK, but arcade are going to test it! It builds an
 index of all text entries and then checks these against the lookupmap. It
 will try and locate misallocated message text, and if that fails it will
 truncate the message text. After this has finished, it lists all the text
 blocks which haven't been assigned to messages, and asks you if you want to
 remove them: usually you’ll say yes.

 One thing: it can be run in check only mode or check and fix mode. In
 check only mode it will multitask and will *not* alter the messagebase,
 so it can be used with users online. Check and fix should only be used
 with no users online. You should ! relink before AND AFTER using the ˜
 verify links option (or restart before and after).

 It also checks that messages are where they should be: arcade appear to
 have had this problem, which should be impossible without filecore map

....ánotes (31%) ˆ\ for help ˆC quits Cursors or ‘,/ BudgieSoft 1995

FONTS
This short message will detail the fonts used in Frobnicate, and
where you can obtain them from...

ANSI
This font is from Gareth Boden’s excellent
TrueANSI program. You can use the PD font
“MDA1” as a replacement.

CORPUS
This font is built into RiscOS 3.

HOMERTON
This font is built into RiscOS 3.

KEYS1000
This is rarely used in Frobnicate now, it’s
available from good BBSs.

SELWYN
This font is used for the ’pointers’ to the topics
on the front cover. It can be ignored if you don’t
have it. Selwyn is supplied with the Acorn DTP
package.

<system font>
This font is sometimes used in DrawFiles. Your
draw module will render this correctly for you.

SYSTEM.FIXED
This font is available from good BBSs.

TRINITY
This font is built into RiscOS 3.

I hope that makes your font hunting easier...

 How come they
 have it – and we
 don’t???

 Just a little box of
 cereal I found in
 France – and liked.

KELLOGGS???

Frobnicate... Issue 4 PAGE 37

Reader's Letters
Send your letters to:
"Richard Murray" at 2:254/86.1 (FidoNet) or "rmurray@digibank.demon.co.uk".

Feetch, feetch!
One of the sheer delights of the Acorn system is the
filer. It can do what many other GUIs hiccup and
wheeze over; stuff like copying two files from
archive to RAMdisc, datestamping two directories
full of files and formatting a floppydisc – at the same
time! Apart from odd quirks, like Dismount and
Format being next to each other – the filer is very
good. However, it can be improved yet further...

Filer+ (by Jens H. Ovesen) adds these features:

• Hidden objects - just like DOS. Also the ability to
super-hide a file so it stays really hidden.
• Local directory options (so your settings of Small
Icons/Show All could be ’local’ to that directory and not
affect others.
• A proper SetType menu that lists all configured
filetypes – and can bung in a spritefor good measure.
• Keyboard short-cuts for filer operations.
• Ability to define icons to be shown instead of the
normal “directory folder” icon. Thereforeyou can have
“Comms” show a modem, “DTP” show a scroll and
“Games” show something like a Lemming. All other
(undefined) directories will have the normal icon.
• Double-click-hold to imitate a
Shift+double-click (load file into !Edit).

The patch is for RiscOS3.10 and Filer 1.64. It is easy
to install and set up.

This utility is highly recommended, and can be
found on virtually any BBS.

Filer+ - 90% (!)

Rob the Slob, aka Robin Abecasis, has released a
new version of his popular ArcQuoter program. This
version is ArcBBS-friendly, so now you can ALL
use Robin’s door.

The purpose of ArcQuoter is threefold:
• Inserts a random quote into a text input
window (such as fidomail). This is the main
purpose of the program, so facilities for this
are extensive.
• Inserts your “signature” into a text input
window, useful for e–mail.
• Will spool files dragged to it to a text input
window. Useful for shoving stuff across to
somebody via modem (eg: in a chat). A nice
touch is the hourglass shows the %age of the
file sent.

The main alternative to this program is “YouWhat2”
by Daniel Aston. However it appears that Daniel has
left the comms scene, and may not be updating his
version. This – on the other hand – offers many good
features and is fairly easy to set up. The only gripe I
have is the need to bother with this type of program
at all... but that’s hardly Robin’s fault. :-)

ArcQuoter - 80%

PS: Robin... Where’s that AI quoter you promised?
[this is a private joke... ;^)]

Reviewed unbiasedly (hmmm!?)
by Richard Murray on a patched A5000

4Mb RAM, 40Mb IDE + 40Mb IDE + 1Gb SCSI,
SP_Dual issue 2, Vision, RiscOS 3.10 + patches,

Ground Control Teletext adaptor, AKF12 monitor,
150Mb tape streamer, USR Courier 14400, Pace

MicroLin 14400.

I hope soon to bring in-depth reviews of software
such as TrueANSI2, Commotion and ArmBBS.

Hey guys...?

Frobnicate... Issue 4 PAGE 38

Qu’est–ce que c’est, ça?
Never one to worry about being controversial (who? meee?), I’m going to prophesise about how wonderful and

innovative Acorn technology is – and how come this technology is not appearing everywhere like PCs. In fact, Acorn
is relatively unknown. Ask Joe-the-PC-dealer and he’ll usually either look at you blankly or tell you that you should
invest in an “industry standard” computer. The few that do know are just that.... a few.

But why? Do Acorn have a naff and overprices operating system? NO. Do Acorn make a big deal out of the
latest 16/32bit CISC processor (that is code-compatible with an old 8-bit processor that was around in the late ’70s –
nearly 20 years ago!)? NO. People moan about Acorn having “a built-in legacy”. Okay. So the operating system until
recently had MODEs, and still has FXs. It is nothing like a certain type of computer that features:

• 8-bit processor compatible
• Absurd memory limits without bodges to get around them
• A complicated command-line based operating system.....
•to which a slightly dismal GUI system can be added.

What’s so bad about legacies anyhow? The latest thing on the programming front is C++. Let me tell you, C++
developed from three angles:

• From C (1983-1989); derived from B (1970) and BCPL (1965)
• From Simula67 (1967)
• From ADA

So you can see that while C++ is fairly new, it’s inspiration dates back into the dawn of (computer) time.

Back to the original question. Acorn have managed to successfully interface an IntelTM CISC processor into
their own RISC system. Sure, you can’t run PageMakerTM pseudo-native in the DeskTop...yet...but it’s one heck of an
achievement. Acorn were once up-there with the freaky innovation (who has never seen the underside of a BBC
micro?) but now Acorn are no longer there. If we were, we’d have a computer system offering:

• Nice small RISC processor running at a comfortable 60MHz and outrunning the fastest PC
• 16Mb RAM fast enough to be directly accessed by the processor
• Screen modes up to 4000x4000 at 24bit, flicker free.

Sadly, not a lot has happened. Acorn seem to be concentrating elsewhere (primarily ARM Ltd and OnLine
Media). This has led to a small decline in Acorn, not helped by the main supplier entering receivership and Acorn
gmbh closing. This has also led to users losing confidence in Acorn – look at the Tornado project. Would Niall be
doing this if the latest superspecial RiscOS4 was just about to appear?

The BBC micro was a powerful machine in it’s time. It had competition in the form of Dragons, Speccies and
suchlike. The Speccy had 48K compared to the BBC’s 32 – but the BBC was so much better in many respects, so
much so the BBC chose it for a TV programme (hence the name “BBC micro”. Including of course that famous (?)
story about Acorn telling Bill Gates that they couldn’t possibly take such a retrograde step.

Why then does it appear to all – including die-hard Acorn fanatics – that Acorn is no longer something to
admire? Is it the over-hyped need for “industry standard”? “Acorn can’t run WordPerfectTM so it’s crap”? (it can
actually!).

There are many possible theories, the likely answer being combined from the eclectic mess of reasons and
excuses therein. I could sit here and type a good theory or even a big thesis to explain why Acorn isn’t as good now
as it once was, but – like Don Quixote – I’d be more or less fighting enemy windmills.

EPILOGUE:
Don’t get me wrong, I’m not anti-Acorn. I’ve only ever seriously owned Acorn computers. Sure, I have/had a

Dragon – but for games. I stand behind my BBC micro, my A3000 and my A5000. The BBC and A3000 may be quirky
now – but they’ve given me many years of use. I stand behind my decision to buy Acorn – against the march of
MicroSoftTM and people yelling “getta real computer” from all sides – even when a PC user can find a way to reduce
my argument to little more than blind devotion. I would mourn the passing of Acorn like America mourned the
assassination of J.F.Kennedy. But Acorn is still here isn’t it? For how long though? Shapes move outside the window
but the dust is beginning to settle here. What we need is somebody to open the door and let the storm in. Maybe that
very person is Niall Douglas (Tornado). Maybe not. Whoever you are, we need you. We need you now.

Long live Acorn!

Frobnicate... Issue 4 PAGE 39

Notice Board
PRODIGY SYSTEMS

HAVE GONE SUMMER
CRAZY!!!!

CHECK OUT THE REAL-LOW PRICES!

 .-----------------------------.--------------------------------.
IDE bare-drive (3.5”)	IDE HardCard (A300/A400/A500)
540Mb IDE £155.00	540Mb IDE £205.00
850Mb IDE £200.00	850Mb IDE £250.00
1Gb IDE £250.00	1Gb IDE £300.00
‘-----------------------------’--------------------------------’	
IDE HardCard (A3000/A3010)	IDE bare-drive (2.5”)
265Mb IDE £250.00	265Mb IDE £160.00
540Mb IDE £365.00	540Mb IDE £275.00
 ‘-----------------------------’--------------------------------’
 .------------------.------------------.
 | SIMMs | CD-ROM |
 | 4Mb .. £140.00 | IDE 2x .. £175 |
 | 8Mb .. £250.00 | IDE 4x .. £225 |
 | 16Mb . £400.00 | |
 `------------------’------------------’
 All SIMMs are fully tested and of the highest quality.
 All CD-ROMs come with CDFS and control software.

 .--------------------------------.
 | Backup |
 | 420Mb Tape SCSI £200.00 |
 | 135Mb Syquest IDE ... £240.00 |
 | 135Mb Syquest SCSI .. £275.00 |
 | 105Mb ZipDrive SCSI . £240.00 |
 `--------------------------------’
 Controlling software comes with the devices,
 so no need to wait/write your own.

All prices are *inclusive* of VAT, P&P (UK...), cables, fittings. All
interfaces and drives are top quality branded products
(Conner/Quantum etc). All drives are formatted for the user. Please
ring to ascertain suitability of product before ordering. Please ring
for latest prices or other products such as RAM etc.
CD-ROM drives are available in IDE and SCSI forms, please ring for
prices.

 .-- Enquiries ---------------------.---------------------------.
Tel: 01274 596407.	Address: 15 Red Beck Vale
BBS: Northern ARM (01274) 530831	Shipley
Fidonet: 2:250/372.0	West Yorkshire
EMail:	BD18 3BN
cjackson@digibank.demon.co.uk	
 ‘----------------------------------’---------------------------’

BudgieSoft program listing

AR_Info [1.00] Utility
This utility supports ARMsRace Virtual SysOp door by providing an ARMsRace data file viewer.
NOTE: AR format changed. A new version will be out soon!
CastAVote [2.50] Door; ArcBBS 1.63/64 & ArmBBS
This popular door now comes as a bundled package including VoteEdit (the votes data editor) and VoteConfg
(easy-configure CastAVote) and more... Utilities to convert your votes to different formats including CSV.
DoorDocs [5] Textfile
The definitive door writers guide to bits.
HappyHak [1.06] Door; ArcBBS 1.63/64 & ArmBBS
Wind up your users with a faux ‘wardialler’ door.
ArcBBS help [1] Textfile
Addition to !SrcEdit (Acorn’s DDE) to give on-line help on many ArcBBS commands.
InfoSys [1.06] Utility; ArcBBS 1.64 only
INFOrmation SYStem. Use Fidonet for a variety of things that you thought only the Internet could do. Mail batch
processing and ftp are all possible.
LastUsers [1.26] Door; ArcBBS 1.63/1.64
Gives a pretty coloured (or mono if you are not an ANSI user) display of the last # users to call your BBS. Includes
daily totals count.
Linker [1.00] Door; ArcBBS 1.63/1.64
Links your door to a blockdriver, giving better than 80% throughput in most cases. Could be a link to a modem for
follow-on calling, or an internet gate or or or...
ONLINE [1.00] Door; ArcBBS 1.64 & ArmBBS
This parodies the ArcBBS ONLINE command (list users currently on-line). However it does this in real-time so you
can watch BBS life as it happens.
Parlez [1.32] Door; ArcBBS 1.64 & ArmBBS
This door provides and BBS inter-messaging facility. You can conduct a private chat or just send a message. Failed
messages are uploaded to the user’s mailbox (ArcBBS only).
ReadTasks [2.15] Door; ArcBBS 1.63/64 & ArmBBS
This will display the tasks that you are currently running - not a lot of point, basically a clone of the Archiboard
facility - just to see if I could do it. This was BudgieSoft’s first ever door.
ReadUsers [1.00] Utility; ArcBBS 1.64
This utility will scan through the userbase and output information on the users in long form or short form. Useful for
taking a ‘snapshot’ of your userbase in case something happens to it. Can be easily converted to ArcBBS 1.63.
RecordUsr [1.00] Door; ArcBBS 1.63/64 & ArmBBS
Records when a user enters a certain menu. Useful for checking the popularity of things.
SetUser0 [1.00] Utility; ArcBBS 1.64
Ever peed-off by the fact that ArcBBS 1.64 won’t allow you to log on as user #0 - the default user? Be peed-off no
longer. This utility allows you to nominate another user to be the ‘default’ user. Simply set up this nominated user as
you wish the default to be, then run this program... Hey presto - the default user #0 set up as you require.
Password/message areas and all.
SysOpChat [1.63beta22] Door; ArcBBS 1.63/64 & ArmBBS
This provides a nice split-screen SysOp chat. Features: Macros, spooling, snapshot, easy-to-configure, chat
‘available’ times, automatic excuse, choice of excuses, configurable screen displays, spool facility for ANSI and data
and 1stWord+ as well as ASCII (can display in SysOp’s chat window or full-screen. Can even display a relocatable
module!), international support, unique bleeping so you know you are being paged.
TopFeatur [1.00] Utility; ArcBBS 1.63/64
Like a glorified RecordUsr, with graph display. Definitely techie-fodder this. Can be converted to ArmBBS or
whatever.
TTXDoor [1.00alpha] Door; ArcBBS 1.63/64 & ArmBBS
On-line teletext door - converts teletext to ANSI. :-)
ViewFile [1.00beta] Door; ArcBBS 1.63/64 & ArmBBS
Upon DaviD Dade’s suggestion, I am working on a door to allow the SysOp to view certain files, like the BBS logs.

BudgieSoft...
 >3Mb of hand-created code and still going strong. RSI exists!:-)

BORED?
Call ArcTic BBS on:

+44 181 903 1309 (28800bps)
+44 181 903 1308 (14400bps)

SysOp: Steve Pursey

Frobnicate... Issue 4 PAGE 40

