
Writing Extensions

What is an extension?
Account supports up to eight plug-in "extensions". These may be used to provide additional
functionality to the software.

How are extensions implemented?
Extensions are written in OPL, and are translated to be an OPO file.
The filename must be eight characters in length, in the form xxxxAEXT.OPO where the "xxxx" can be
anything you choose.

There must be a minimum of four procedures in the program. The procedures begin with the same four
characters of the filename.

1. xxxxID$
Returns a string of up to 32 characters. When the extensions are scanned at Account start-up,
each extension is loaded and this procedure called. The text returned is used in the "Extensions"
selection dialogue to describe what the extension does.
This procedure should be quick and simple, an idea could be:
PROC TestID$:
RETURN "This is a test extension."

ENDP

2. xxxxINI%
This is the initialisation call. It is called just prior to the main entry, and it should return 0 for
okay and non-zero for failure.
If your module needs any specific memory claims, etc, then it should set them up here. This
includes things like new 'windows'.

3. xxxxDO%
This is the main entry. This should get any required user input (using dialogues, not console
input/output), and do whatever the extension is supposed to do.
Returns 0 for okay or non-zero for failure.

4. xxxxFIN%
This is the finalisation entry. It is always called prior to the extension being unloaded. Here,
you should close all graphics windows and release all memory claims.
You must be aware, and able to cope with, it being called in cases such as a failed initialisation
(i.e. not enough memory). It should return 0 or non-zero, but because the extension is
immediately unloaded, the return value is ignored.

It is strongly recommended that you provide a procedure at the start of the program to act as a "catch"
for if the user attempts to run the program. Refer to the CSV export example.

Calling convention, pseudo-code
This should help you to better understand how extensions are called.

During start-up:
Load extension
Description$ = xxxxID$:
Unload extension

EXTSPEC.WRD Page 1 of 5 2006/10/25� at 22:16



Writing extensions for Account

During extension execution:
Load extension
If (xxxxINI%: <> 0)
xxxxFIN%:
Unload extension, and return

ENDIF
If (xxxxDO%: <> 0)
xxxxFIN%:
Unload extension, and return

ENDIF
xxxxFIN%:
Unload extension
Return

Global variables
Global variables are not possible in loaded modules.
For this reason, Account provides nine global variables exclusively for use by extension modules:

EMIa%, EMIb%, and EMIc%
These are (16 bit) integer values, for use for things such as file handles.

EMLa%, EMLb%, and EMLc%
These are (32 bit) long values, for numbers and/or pointers with a value over 32K.

EMRa, EMRb, and EMRc
These are real values (i.e. numbers which may have a decimal fraction like 12.34).

Wherever possible you should use local variables, and pass variables to procedures.

Errors
Account has an error-catcher, however you should implement your own error trapping.
Account behaviour upon an error is to report the error, call the finalise entry, then unload the
extension.

Account variables
The following global variables are accessible:

EM??
The supplied int, long, and real variables described above.

C.UName$
The name of the account holder (64 chars).

C.IBAN$
The IBAN or account number (48 chars).

C.Bank$
Details of the bank (64 chars).

C.IniBal
The initial balance of the account.

EXTSPEC.WRD Page 2 of 5 2006/10/25at 22:16



Writing extensions for Account

C.CredLim
The credit limit of the account, usually 0 or a negative value.

C.NxtChq&
The number of the next cheque.

C.LastCls&
The date of the last time Account was exited.

The 'C' database is read-only.

DatBase$(128)
The path and filename of the account being accessed, without extension.

pdd%, pmm%, pyy%
May be used if you need some integer values.

ax%, bx%, cx%, dx%, si%, di%, fl%
Values, plus fl% for flags, for OS calls.

TopLine%, BotLine%, CurLine%
The top and bottom lines of the display, and the current line. You should alter these with
extreme care; and if you do it is imperative that you call DoFudge: afterwards.

AppN$(12), AppV$(6), AppD$(12)
Application name, version, and date, in case you need them, perhaps to test the version or
somesuch?

DtForm%, DtSep%
The date format (0=American MM/DD/YYYY, 1=European DD/MM/YYYY, or
2=Japanese/ISOish YYYY/MM/DD); and the ASCII value of the date separator ('/', '-', etc).
These are read from the organiser's system settings.

Buffer$(128)
May be used if you require a string buffer.

Accessing account entries
The account entries are implemented as a database, providing the following items of information:

A.Date&
The date of the entry.

A.Item$(64)
The description of the account entry.

A.Amount
The amount of the entry. There is no flag for Debit or Credit, these are inferred by whether the
amount is positive or negative.

Unless you have extremely good reason, the account entries should be treated as read only. This is
because there are a number of formalities after modifying the database (such as date sorting and
updating the account settings). Contact me if you would like further information.

EXTSPEC.WRD Page 3 of 5 2006/10/25 at 22:16



Writing extensions for Account

Procedures provided within Account
There are various procedures within Account that may be of use to you:

Contrast:(Adjust%)
If you wish to trap Acorn-< and Acorn-> to adjust the contrast (yes, it seems the OS may
expect the current application to do it!), then call this procedure.
Adjust% = -1 to make contrast lighter, any other value for darker.

DoFudge:
If you alter TopLine%, BotLine%, or CurLine% (the display position values), you will
need to call DoFudge to sanitise the values.

DoYMD$:(year%, month%, day%)
Given a broken-down date, this will return a string containing the date in a form such as
"2006/12/16". The actual format is determined by the system configuration.

DyToDat:(days&)
Given a number of days (i.e. the account entry date value), this will return the date in broken-
down form in the global variables pyy%, pmm%, and pdd%.

Compatibility
Apart from any bug fixes, the extension system is "finished", so there are not envisaged to be any
problems using extensions with future versions of Account.
The only anticipated 'problem' is that Account only supports up to eight extensions... Most future
additions to the software will be implemented in the form of extension modules.

Distribution
You are completely free to distribute your extension modules; however I would appreciate if you could
provide me with the URLs so I can link directly to the software, and to your site, from my website
alongside the software itself.
While I wil not disallow charging for your extensions, I will state that doing so goes against the ethos
of the PB2 website.

Support
What sort of support you offer for your extension is a matter for you to decide.
I will only be able to provide a limited amount of support for problems is developing extension
modules on a 256Kb PocketBook II or series 3A. The support is completely informal and provided as a
favour to you. The quality of support greatly depends upon whether or not you are willing to share
your OPL source with me.
No support will be provided to the end-user for extension modules that I did not write.

Example
Provided is a CSV exporter, along with source. This is provided so that you may see an extension in
action.

EXTSPEC.WRD Page 4 of 5 2006/10/25 at 22:16



Writing extensions for Account

Contact
The website is:

http://www.heyrick.co.uk/software/pb2/

My email address is:

heyrick -at- merseymail -dot- com

Disclaimer
This information is believed to be correct and is provided in good faith, however I accept no liability or
responsibility for error and/or omission. E&OE.
If you suspect an error in this documentation, please email me.

[end of document]

EXTSPEC.WRD Page 5 of 5 2006/10/25 at 22:16


