SWI
|
SWI<suffix> <number>This is a simple facility, but possibly the most used. Many Operating System facilities are provided by SWIs. It is impossible to imagine RISC OS without SWIs.
Nava Whiteford explains how SWIs work (originally in Frobnicate issue 12½)...
Examples of SWIs are:
When used in this way, SWIs allow the Operating System to have a modular structure, meaning that the code required to create a complete operating system can be split up into a number of small parts (modules) and a module handler.
When the SWI handler gets a request for a particular routine number it finds the position of the routine and executes it, passing any data.
SWI &02or
SWI "OS_Write0"Both these instructions are in fact the same, and would therefore assemble to the same instruction. The only difference is that the second instruction uses a string to represent the SWI number which is &02. When a program written using the string is used, the string is first looked up before execution.
We're not going to deal with the strings here as they do not give a true representation of what it going on. They are often used to aid the clarity of a program, but are not the actual instructions that are executed.
Right lets take a look at the first instruction again:
SWI &02What does that mean? Well, literally it means enter the SWI handler and pass value &02. In RISC OS this means execute routine number &02.
So how does it do that, how does it passed the SWI number and enter the SWI handler?
If you look at a disassembly of the first 32 bytes of memory (locations 0-&1C) and disassemble them (look at the actual ARM instructions) you should see something like this:
Address Contents Disassembly 00000000 : 0..å : E5000030 : STR R0,[R0,#-48] 00000004 : .óå : E59FF31C : LDR PC,&00000328 00000008 : .óå : E59FF31C : LDR PC,&0000032C 0000000C : .óå : E59FF31C : LDR PC,&00000330 00000010 : .óå : E59FF31C : LDR PC,&00000334 00000014 : .óå : E59FF31C : LDR PC,&00000338 00000018 : .óå : E59FF31C : LDR PC,&0000033C 0000001C : 2¦ ã : E3A0A632 : MOV R10,#&3200000So what? You may think, well take a closer look.
Excluding the first and last instructions (which are special cases) you can see that all the instruction load the PC (Program Counter), which tells the computer where to execute the next instruction from, with a new value. The value is taken from a address in memory which is also shown. (you can take a look at this for yourself using the "Read Memory" option on the !Zap main menu.)
Now, this may seem to bare little relation to SWIs but with the following information it should make more sense.
All a SWI does is change the Mode to Supervisor and set the PC to execute the next instruction at address &08! Putting the processor into Supervisor mode switches out 2 registers r13 and r14 and replaces these with r13_svc and r14_svc.
When entering Supervisor mode, r14_svc will also be set to the address after the SWI instruction.
This is really just like a Branch with Link to address &08 (BL &08) but with space for some data (the SWI number).
As I have said address &08 contains a instruction which jumps to another address, this is the address where the real SWI Handler is!
At this point you maybe thinking "Hang on a minute! What about the SWI number?". Well in fact the value itself is ignored by the processor. The SWI handler obtains it using the value of r14_svc that got passed.
This is how it does it (after storing the registers r0-r12):
Here is some example code, from the ARM610 datasheet:
0x08 B Supervisor EntryTable DCD ZeroRtn DCD ReadCRtn DCD WriteIRtn ... Zero EQU 0 ReadC EQU 256 WriteI EQU 512 ; SWI has routine required in bits 8-23 and data ; (if any) in bits 0-7. ; Assumes R13_svc points to a suitable stack STMFD R13, {r0-r2 , R14} ; Save work registers and return address LDR R0,[R14,#-4] ; Get SWI instruction. BIC R0,R0, #0xFF000000 ; Clear top 8 bits. MOV R1, R0, LSR #8 ; Get routine offset. ADR R2, EntryTable ; Get start address of entry ; table. LDR R15,[R2,R1,LSL #2] ; Branch to appropriate routine. WriteIRtn ; Wnte with character in R0 bits 0 - 7. ............. LDMFD R13, {r0-r2 , R15}^ ; Restore workspace and return, restoring ; processor mode and flags.That's it, that's the basics of the SWI instruction.
Sources:
The ARM610 datasheet by Advanced Risc Machines
The ARM RISC Chip - A programmers guide by van Someren Atack published by Addison Wesley
Thank you Nava.
Now we'll take an example from RISC OS itself...
*MemoryI 8 +4 00000008 : E59FF39C : †ôflâ : LDR PC,&000003ACThis is a 'later' version of RISC OS, so we load an address instead of branching directly to it.
*Memory 3AC +4 Address : F E D C 3 2 1 0 7 6 5 4 B A 9 8 : ASCII Data 000003AC : 01F033C0 : Á3ð.And this, is the address of our SWI despatch routine.
*MemoryI 1F033C0 01F033C0 : EA640146 : F.dê : B &038038E0 01F033C4 : E3CEC3FF : ÿãÎã : BIC R12,R14,#&FC000003 01F033C8 : E51CB004 : .°.â : LDR R11,[R12,#-4] 01F033CC : E3CBB4FF : ÿ´Ëã : BIC R11,R11,#&FF000000 ; =&FF<<24 01F033D0 : E92D0800 : ..-é : STMFD R13!,{R11} 01F033D4 : E3DBB802 : .¸Ûã : BICS R11,R11,#&00020000 ; =1<<17 01F033D8 : 0A6401A6 : ¦.d. : BEQ &03803A78 01F033DC : E38EA003 : . ‰ã : ORR R10,R14,#3 01F033E0 : E33AF000 : .ð:ã : TEQP R10,#0 01F033E4 : E35B0017 : ..[ã : CMP R11,#&17 ; =23 ; *** Not R8-R14 01F033E8 : 135B0034 : 4.[. : CMPNE R11,#&34 ; ="4" (52) 01F033EC : 13CEE201 : .âÎ. : BICNE R14,R14,#&10000000 ; =1<<28 01F033F0 : E35B0C01 : ..[ã : CMP R11,#&0100 ; =256 01F033F4 : 379FF10B : .ñ.7 : LDRCC PC,[PC,R11,LSL #2] 01F033F8 : EA6401B8 : ¸.dê : B &03803AE0 [...non-SWI stuff snipped...]Part of the SWI despatch.
*MemoryI 38038E0 038038E0 : E92D1C00 : ..-é : STMFD R13!,{R10-R12} 038038E4 : E14FB000 : .°Oá : MRS R11,SPSR ; ARMv3 and later 038038E8 : E20BC23F : ?â.â : AND R12,R11,#&F0000003 038038EC : E18EE00C : .à‰á : ORR R14,R14,R12 038038F0 : E20BC0C0 : ÀÀ.â : AND R12,R11,#&C0 ; ="À" (192) 038038F4 : E18EEA0C : .ê‰á : ORR R14,R14,R12,LSL #20 038038F8 : E10FC000 : .À.á : MRS R12,CPSR ; ARMv3 and later 038038FC : E3CCC01F : .ÀÌã : BIC R12,R12,#&1F ; =31 03803900 : E38CC003 : .À…ã : ORR R12,R12,#3 03803904 : E129F00C : .ð)á : MSR CPSR_c_f,R12 ; ARMv3 and later 03803908 : EA9BFEAD : -Þ.ê : B &01F033C4 [...non-SWI stuff snipped...]The beginning of the SWI despatch calls the code above. This is used on RiscPC-alikes because SWIs occur in SVC32 so the code fudges it to be SVC26 so RISC OS will work.
Finally, there are two calls into this chunk of code...
*MemoryI 3803A78 03803A78 : E33FF003 : .ð?ã : TEQP PC,#3 03803A7C : E3CEE201 : .âÎã : BIC R14,R14,#&10000000 ; =1<<28 ; *** Not R8-R14 03803A80 : E92D4000 : .@-é : STMFD R13!,{R14} 03803A84 : E59BB7E4 : ä·.â : LDR R11,[R11,#&7E4] ; =2020 03803A88 : E35B050E : ..[ã : CMP R11,#&03800000 ; =7<<23 03803A8C : 3A000004 : ...: : BCC &03803AA4 03803A90 : 292D8000 : ..-) : STMCSFD R13!,{PC} ; *** Offset not guaranteed 03803A94 : 2A009CDD : ݆.* : BCS &0382AE10 03803A98 : E1A00000 : .. á : NOP 03803A9C : E8BD4000 : .@½è : LDMFD R13!,{R14} 03803AA0 : EA9BFE39 : 9Þ.ê : B &01F0338C 03803AA4 : E3A0A003 : . ã : MOV R10,#3 03803AA8 : EB0016FD : Ý..ë : BL &038096A4 03803AAC : EAFFFFFA : úÿÿê : B &03803A9C 03803AB0 : E1A0B00E : .° á : MOV R11,R14 03803AB4 : EF02010A : ...ï : VDUX &0A ; =10 03803AB8 : 7F02010D : .... : VDUVCX &0D ; =13 03803ABC : E1A0E00B : .À á : MOV R14,R11 03803AC0 : EA9BFE31 : 1Þ.ê : B &01F0338C 03803AC4 : E1A0A000 : . á : MOV R10,R0 03803AC8 : E20B00FF : ÿ..â : AND R0,R11,#&FF ; ="ÿ" (255) 03803ACC : E1A0B00E : .° á : MOV R11,R14 03803AD0 : EF020000 : ...ï : SWI "XOS_WriteC" 03803AD4 : 71A0000A : .. q : MOVVC R0,R10 *MemoryI 3803AD8 03803AD8 : E1A0E00B : .À á : MOV R14,R11 03803ADC : EA9BFE2A : *Þ.ê : B &01F0338C 03803AE0 : E35B0C02 : ..[ã : CMP R11,#&0200 ; =512 03803AE4 : 3AFFFFF6 : öÿÿ: : BCC &03803AC4 03803AE8 : E92D4200 : .B-é : STMFD R13!,{R9,R14} 03803AEC : E20EA33F : ?£.â : AND R10,R14,#&FC000000 ; =&3F<<26 03803AF0 : E28FE04B : KÀ·â : ADR R14,&03803B43 03803AF4 : E18EE00A : .À‰á : ORR R14,R14,R10 03803AF8 : E3CBC03F : ?Àëã : BIC R12,R11,#&3F ; ="?" (63) 03803AFC : E1A0A22C : ,¢ á : MOV R10,R12,LSR #4 03803B00 : E20AA03F : ? .â : AND R10,R10,#&3F ; ="?" (63) 03803B04 : E59AA790 : .§.â : LDR R10,[R10,#&790] ; =1936 03803B08 : E35A0000 : ..Zã : CMP R10,#0 03803B0C : 0A000009 : .... : BEQ &03803B38 03803B10 : E59A900C : .'.â : LDR R9,[R10,#&00C] ; =12 03803B14 : E159000C : ..Yá : CMP R9,R12 03803B18 : 159AA008 : . .. : LDRNE R10,[R10,#8] 03803B1C : 1AFFFFF9 : ùÿÿ. : BNE &03803B08 03803B20 : E89A1400 : ...è : LDMIA R10,{R10,R12} 03803B24 : E59CC00C : .À†â : LDR R12,[R12,#&00C] ; =12 03803B28 : E35C0000 : ..\ã : CMP R12,#0 03803B2C : 120BB03F : ?°.. : ANDNE R11,R11,#&3F ; ="?" (63) 03803B30 : 128CC004 : .À…. : ADDNE R12,R12,#4 03803B34 : 11A0F00A : .ð . : MOVNE PC,R10I'll be nice and leave you to work out what that code does...